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Abstract. A nonlinear wavelet shrinkage estimator was proposed in Huang and Lu (2000). Such an estimator

combined the asymptotic equivalence to the best linear unbiased prediction and the Bayesian estimation in nonpara-

metric mixed-effects models. In this article a data-driven GCV method is proposed to select hyperparameters. The

proposed GCV method has low computational cost and can be applied to one or higher dimensional data. It can be

used for selecting hyperparameters for either level independent or level dependent shrinkage. It can also be used for

selecting the primary resolution level and the number of vanishing moments of wavelet basis. The strong consistency

of the GCV method is proved.
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1. Introduction

In the last decade wavelets have been an important and successful tool in signal and image

processing, especially for denoising and compression. In denoising and compression, the wavelet

coefficients are truncated or shrunk towards zero. There are different approaches for truncating

and shrinking wavelet coefficients. Hard and soft thresholding schemes were proposed and studied

in a series of papers by Donoho and Johnstone (see, for instance, Donoho and Johnstone, 1994;

Donoho, 1995). Later, various Bayesian wavelet shrinkage methods were studied by several authors

(Chipman, Kolaczyk and McCulloch, 1997; Abramovich, Sapatinas and Silverman, 1998; Vidakovic,

1998a and 1998b; Huang and Lu, 2000 and 2001). The works of Huang and Lu proposed an adaptive

nonlinear shrinkage method, BLUPWAVE, based on perspectives of the Bayesian estimation and the

Gauss-Markov estimation (i.e., the BLUP). The shrinkage curve of BLUPWAVE falls between those

of hard and soft thresholdings, as seen in Figure 1. These three different thresholding approaches



can be summarized below.

Hard thresholding: ∆H(d, δ) = d I(|d| ≥ δ),

Soft thresholding: ∆S(d, δ) = sign(d) (|d| − δ) I(|d| ≥ δ),

BLUPWAVE: ∆D(d, δ) =
(

1− δ2

d2

)
d I(|d| ≥ δ),

where d is a wavelet coefficient, δ is a threshold parameter, I(·) is the indicator function, and

sign(·) is the signum function. The BLUPWAVE shrinkage rule compromises between hard and soft

thresholding by drawing positive aspects of both strategies.

The generalized cross-validation method for parameter selection was proposed and its related

consistency was studied in the literature (Craven and Wahba, 1979; Golub, Heath and Wahba, 1979;

Li, 1985, 1986 and 1987; Wahba, 1990). In wavelet shrinkage estimation, data-driven procedures

based on cross-validation or generalized cross-validation for selecting parameters of soft and hard

thresholdings were studied by Weyrich and Warhola (1995 and 1998), Nason (1996 and 1999),

Jansen, Malfait and Bultheel (1997), Jansen and Bultheel (1999, 2001), and Jansen (2001). In this

article we propose a generalized cross-validation method for selecting parameters encountered in the

BLUPWAVE scheme, including selection of threshold parameters at different resolution levels, the

primary resolution level and the number of vanishing moments in the wavelet basis. Extending from

consistency results in Li (1985, 1986 and 1987) for linear estimation, we present the consistency of

GCV for the nonlinear BLUPWAVE. Simulation studies are performed to explore the finite sample

behavior in practice.

2. BLUPWAVE

We consider the following model of a discrete noisy signal:

yi = f(ti) + εi, i = 1, . . . , n, (1)

where ti’s are equally spaced design points over an interval [a, b] and the errors εi’s are iid normal

random variables with zero mean and variance σ2. In vector form, we use the notation

y = f + ε, (2)
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where y = (y1, . . . , yn)′, f = (f(t1), . . . , f(tn))′ and ε = (ε1, . . . , εn)′. The sample size is assumed

n = 2m+1, m ∈ N . Expand the mean function f(t) in terms of wavelet basis as

f(t) =
∑

k

βj,kφj,k(t) +
∞∑

`=j

∑

k

γ`,kψ`,k(t), (3)

where j is the primary resolution level, {φ(·), ψ(·)} are a pair of orthogonal scaling function and

mother wavelet that generate a multiresolution analysis, and φj,k(t) = 2j/2φ(2jt − k), ψ`,k(t) =

2j/2ψ(2jt− k).

We adopt a Bayesian approach, with coefficients {βj,k} being treated as unknown scalars (i.e.,

fixed effects) and {γ`,k} being treated as random variables (i.e., random effects) having prior distri-

bution N(0, η`), where η` is a variance. An adaptive reconstruction scheme, called BLUPWAVE, has

been proposed in Huang and Lu (2000) for this model (also known as a nonparametric mixed-effects

model). The reconstruction therein is a thresholding rule that combines keep-or-kill and shrinkage

with the following form

f̂(t) =
2j∑

k=1

β̂j,kφj,k(t) +
m∑

`=j

2`∑

k=1

(
1− λ

γ̂2
`,k

)

+

γ̂`,kψ`,k(t) (4)

where β̂j,k’s and γ̂`,k’s are the empirical scaling and wavelet coefficients respectively, λ is a cer-

tain parameter involving σ, and (·)+ means max(·, 0). The Bayesian estimation for nonparametric

mixed effects is also the best linear unbiased prediction (BLUP). Such a predictor has the following

asymptotic form

f̂BLUP (t) =
2j∑

k=1

β̂j,kφj,k(t) +
m∑

`=j

2`∑

k=1

(
1− λ

η` + λ

)
γ̂`,kψ`,k(t) + O

(
1

nλ

)
a.s.

Every γ̂2
`,k, k = 1, . . . , 2`, is an asymptotically unbiased estimator for η` + λ. Hence, it leads to the

nonlinear BLUPWAVE scheme (4). The details are studied in Huang and Lu (2000). The empirical

coefficients, β̂j,k and γ̂`,k, can be obtained in linear complexity by a discrete wavelet transform

(DWT) of y 
 β̂

γ̂


 =

Wy√
n

,

where W is the orthogonal matrix associated with the DWT (Mallat 1989). Hereafter, we work on

the coefficients w which comes from w = Wy, instead of the coefficients (β̂, γ̂). Model (2) can then
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be represented as

w = Wf + Wε = u + ε∗, (5)

where the errors ε∗ are still iid normal with zero mean and variance σ2. For notational simplicity,

we make no distinction between ε and ε∗ henceforth, and use the notation ε for both of the errors ε

and ε∗. The BLUPWAVE thresholding scheme becomes

ûλ,i =





wi for i = 1, . . . , 2j ,(
1− nλ

w2
i

)
+

wi for i = 2j + 1, . . . , n.
(6)

The focus of this article is on GCV selection of the parameter λ. The GCV method can be also

extended to select level dependent (i.e., scale dependent) thresholds for one or higher dimensional

data.

3. The generalized cross-validation method

3.1. GCV for level independent thresholding. Define the mean square error Rn(λ) =
1
n ||ûλ − u||22 = 1

n

∑n
i=1 (ûλ,i − ui)

2
. The GCV score is defined by

GCVn(λ) =
1
n ||ûλ − w||22(

1− 1
n

∑n
i=1

∂ûλ,i

∂wi

)2

=
1
n ||ûλ − w||22(

1− 2j

n − 1
n

∑n
i=2j+1(1 + nλ

w2
i

)I(w2
i > nλ)

)2 .

The GCV estimate of λ, given by λ̂n = arg minλ≥0 GCVn(λ), serves as an estimate of the argument

minimizer for Rn(λ). The strong consistency of GCV theorem below assures that the GCV estimate

λ̂n achieves the minimum value for Rn(λ) asymptotically under Assumptions 1-3.

Assumption 1 Assume that the underlying function f(t) is in the Sobolev space W s
2 [a, b], where

s > 0 is the degree of regularity (or smoothness). Also assume that the wavelet basis used has the

number of vanishing moments v with v > s.

Assumption 2 Assume that λ → 0 and nλ → ∞, as n → ∞; also assume that the primary

resolution level j →∞, as n →∞.

Assumption 3 Assume that the threshold parameter λ and the primary resolution level j satisfy

the constraint limn→∞ 22jsλ = ∞.
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By Assumption 1 f is in a certain Sobolev space W s
2 . There are also some related Besov spaces

Bs
p,q imbedded in W s

p . As the error criterion adopted in this article is the mean square error,

we take p = 2. Let Cα denote the class of functions that are uniformly Lipschitz with exponent

α > 0. The following imbeddings are useful: W s
2 = Bs

2,2, Bs+

2,q− ⊂ Bs
2,q, and Cs ⊂ W s−

2 , where

0 < s− < s ≤ s+ < ∞, and 0 < q− ≤ q. We know that piecewise Lipschitz functions with exponent

s are not in W s
2 . They are not in Bs

2,q, either. The discontinuity at jump point(s) will lower the

global regularity. However, such functions are in some other Sobolev spaces with a smaller regularity

depending on the type(s) of singularity at the jump point(s). For examples, we discuss below four

test functions, Blocks, Bumps, HeaviSine and Doppler, which are used later in the simulation studies.

For the Blocks, every block is C∞ in the interior of its block interval. However, at jump points, the

regularity is less than 1/2. The entire Blocks signal belongs to the space W s
2 [0, 1] for any 0 < s < 1/2,

but the regularity will never reach 1/2. By the above imbedding results, the Blocks signal is also in

Bs
2,q for any 0 < s < 1/2 and 2 ≤ q ≤ ∞. The HeaviSine signal has the same phenomenon. It is

C∞ in the interiors of intervals (0, 0.3), (0.3, 0.72) and (0.72, 1). At jump points, 0.3 and 0.72, the

regularity is less than 1/2. The HeaviSine signal belongs to the same Sobolev space as the Blocks

does. As for the Bumps, the signal is in W s
2 [0, 1] for any 0 < s < 3/2, and hence in Bs

2,q[0, 1] for

any 0 < s < 3/2 and 2 ≤ q ≤ ∞. As for the Doppler, the signal is in C∞[h, 1 − h] for arbitrarily

small h > 0, but the regularity near the right boundary is less than 3/2. Hence, the Doppler signal

belongs to W s
2 [h, 1] for any 0 < s < 3/2 and Bs

2,q[h, 1] for any 0 < s < 3/2 with 2 ≤ q ≤ ∞.

The following Sobolev characterization in Mallat (1989) will be used. A function f is in W s
2 [a, b]

if and only if it satisfies the condition:
∑

`,k∈Z(1+22`s)|〈f, ψ`,k〉|2 < ∞. Therefore, for f ∈ W s
2 [a, b],

we have
1
n

n∑

i=2j+1

u2
i =

m∑

`=j

2`∑

k=1

|〈f, ψ`,k〉|2 = O
(
2−2js

)
.

As required by Assumption 2, the primary resolution level j increases to infinity as the data size

n →∞. Usually, j goes to infinity at a somewhat slow rate. An intuitive explanation for this slow

rate is as follows. For smoother functions (i.e., larger s), j goes to infinity at a slower rate to allow a

wider smoothing bandwidth. Assumption 2 requires that λ → 0 and nλ →∞, while Assumption 3

controls the convergence speed so that λ goes to zero at a rate slower than O(2−2js). If the primary

resolution level is of the optimal order 2j = O(n1/(2s+1)), then λ is required to go to zero at a rate

slower than O(n−2s/(2s+1)) and nλ is required to go to infinity at a rate faster than O(n1/(2s+1)).
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That is, the threshold nλ for BLUPWAVE is theoretically approaching infinity at a faster rate than

the universal threshold 2σ2 log n. From Figure 1, the BLUPWAVE must have a larger threshold

value than soft thresholding has in order to have the same shrinkage effect (i.e., have the same

resulting shrunk coefficient). If we draw a horizontal line in the upper half plane in Figure 1, we

have to shift the curve of soft thresholding to the left, which means that the soft thresholding must

have a smaller threshold parameter δ, to meet with the BLUPWAVE curve at the same intersection

point with the horizontal line.

Theorem 1 (GCV Theorem) Under Assumptions 1, 2 and 3, we have

lim
n→∞

Rn(λ̂n)
Rn(λ∗n)

= 1 a.s.,

where λ̂n = arg minλ≥0 GCVn(λ) and λ∗n = arg minλ≥0 Rn(λ).

Theorem 2 Under Assumptions 1, 2 and 3, we have

lim
n→∞

GCVn(λ) = lim
n→∞

Rn(λ) + σ2 a.s.

3.2. Proofs for Theorem 1 and Theorem 2. Define the following notation:

µn(λ) =
1
n

n∑

i=2j+1

(
1 +

nλ

w2
i

)
I(w2

i > nλ),

pn(λ) =
1
n

n∑

i=2j+1

(ûλ,i − ui)(wi − ui),

hn(λ) = Rn(λ)−GCVn(λ) + σ2 − 2pn(λ).

The next lemmas are established for Theorem 1 and Theorem 2.

Lemma 1 Under Assumptions 1, 2 and 3, we have

1
n

n∑

i=2j+1

Prob{w2
i > nλ} = O

(
e−nλ/(8σ2)

√
nλ

)
.

Proof: Recall that n−1
∑n

i=2j+1 u2
i = O

(
2−2js

)
. By Assumption 3, λ = o(2−2js), then we have

|ui| <
√

nλ/2 for i = 2j + 1, . . . , n, for sufficiently large n. Then

1
n

n∑

i=2j+1

Prob{w2
i > nλ} =

1
n

n∑

i=2j+1

Prob{(εi + ui)2 > nλ}
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≤ 2
n

n∑

i=2j+1

∫ ∞
√

nλ/2

e−y2/(2σ2)

√
2π σ

dy ≤ 1√
π

∫ ∞

nλ/(8σ2)

e−t

√
t

dt

≤ 2
√

2 σe−nλ/(8σ2)

√
πnλ

= O

(
e−nλ/(8σ2)

√
nλ

)
.

The last inequality follows from the inequality 1/
√

t ≤ 2
√

2 σ/
√

nλ, valid for t in the limits of

integration. 2

Lemma 2 Assume Assumptions 1, 2 and 3. For any arbitrary α > 0, we have

1
n

n∑

i=2j+1

I(w2
i > nλ) = o

(
1

(nλ)α

)
a.s.

Proof: For arbitrary α > 0 and q > 2α, we have

max
2j+1≤i≤n

|ui|<
√

nλ/2

(nλ)2αE I(w2
i > nλ) = max

2j+1≤i≤n

|ui|<
√

nλ/2

(nλ)2αProb{w2
i > nλ}

≤ max
2j+1≤i≤n

(nλ)2αProb{|εi| >
√

nλ/2} ≤ max
2j+1≤i≤n

4qE|εi|2q

(nλ)q−2α
< ∞.

The second inequality above is a Markov inequality. We then apply the strong law of large numbers

for uncorrelated random variables having a common upper bound to their second moments (Theorem

5.1.2. in Chung (1974)), and get

lim
n→∞

1
n

n∑

i=2j+1

(nλ)αI(w2
i > nλ) = lim

n→∞
1
n

n∑

i=2j+1

(nλ)αE I(w2
i > nλ) a.s. (7)

By Lemma 1, the limit in (7) is zero. Therefore, we can conclude Lemma 2. 2

Lemma 3 Assume Assumptions 1, 2 and 3. For any arbitrary α > 0, we have

µn(λ) = o

(
1

(nλ)α

)
a.s.

Proof: Note that (1 + nλ
w2

i

)I(w2
i > nλ) ≤ 2I(w2

i > nλ). Thus µn(λ) ≤ 2
n

∑n
i=2j+1 I(w2

i > nλ). We

can conclude Lemma 3 from Lemma 2. 2

Lemma 4 Assume Assumptions 1, 2 and 3. For any arbitrary λ1 > 0, λ2 > 0 and α > 0, we have

|pn(λ1)− pn(λ2)| = o
(
(nλ2)1/2/(nλ1)α

)
a.s.

7



Proof: Without loss of generality, we may assume that λ1 ≤ λ2. For κ = 1, 2, let Aκ,n = {i : 2j +1 ≤
i ≤ n and w2

i > nλκ} and Ac
κ,n = {i : 2j + 1 ≤ i ≤ n} \Aκ,n.

|pn(λ1)− pn(λ2)| = 1
n

∣∣∣∣∣∣

n∑

i=2j+1

(ûλ1,i − ûλ2,i)(wi − ui)

∣∣∣∣∣∣

=
1
n

∣∣∣∣∣∣
∑

A2,n

(nλ1 − nλ2)εi

wi
+

∑

A1,n∩Ac
2,n

(
wi − nλ1

wi

)
εi

∣∣∣∣∣∣
. (8)

Similar to the proof for Lemma 2, we have

1
n

∑

A2,n

∣∣∣∣
(nλ1 − nλ2)εi

wi

∣∣∣∣ ≤
√

nλ2

(∑
A2,n

|εi|
n

)
= o

(
(nλ2)−α+1/2

)
a.s.

for arbitrary α > 0, and

1
n

∑

A1,n∩Ac
2,n

wi

(
1− nλ1

w2
i

)
εi = o

(
(nλ2)1/2

(nλ1)α

)
a.s. (9)

Therefore, we can conclude Lemma 4. 2

Lemma 5 Assume Assumptions 1, 2 and 3. For any arbitrary λ1 > 0 and λ2 > 0, we have

|hn(λ1)− hn(λ2)| = O

(
4j

n2

)
+ O

(
1

n 2j(s−1)

)
a.s.

Proof: Without loss of generality, we may assume λ1 ≤ λ2. Let νn(λ) = 2j/n+µn(λ). Observe that
1
n ||ûλ − w||22 = Rn(λ)− 2pn(λ)− 1

n

∑2j

i=1 ε2i + 1
n

∑n
i=2j+1 ε2i . Then hn(λ) and hn(λ1)− hn(λ2) can be

expressed as follows.

hn(λ) =
(Rn(λ) + σ2)(1− νn(λ))2 − n−1||ûλ − w||22 − 2pn(λ)(1− νn(λ))2

(1− νn(λ))2
,

hn(λ1)− hn(λ2) =
{Rn(λ1) + σ2 − 2pn(λ1)}{−2νn(λ1) + ν2

n(λ1)}
{1− νn(λ1)}2

−{Rn(λ2) + σ2 − 2pn(λ2)}{−2νn(λ2) + ν2
n(λ2)}

{1− νn(λ2)}2

= σ2

({−2νn(λ1) + ν2
n(λ1)}

{1− νn(λ1)}2 − {−2νn(λ2) + ν2
n(λ2)}

{1− νn(λ2)}2
)

+
{Rn(λ1)− 2pn(λ1)}{−2νn(λ1) + ν2

n(λ1)}
{1− νn(λ1)}2

−{Rn(λ2)− 2pn(λ2)}{−2νn(λ2) + ν2
n(λ2)}

{1− νn(λ2)}2
def= I + II − III. (10)
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As Rn(λ) = O
(

2j

n

)
+ O

(
2−2js

)
, pn(λ) = O

(
2−js

)
and νn(λ) = O

(
2j

n

)
, a.s., we have

|I| = O(νn(λ1)) + O(νn(λ2)) = O

(
2j

n

)
, and

|II| = O (Rn(λ1)− 2pn(λ1)) O (νn(λ1))

=
(

O

(
2j

n

)
+ O

(
2−js

))
O (νn(λ1))

= O

(
4j

n2

)
+ O

(
1

n2j(s−1)

)
. (11)

Similarly, III has the same order as II. Therefore, we can conclude Lemma 5. 2

Proof for the GCV Theorem: Notice that

1 ≤ Rn(λ̂n)
Rn(λ∗n)

=
GCVn(λ̂n)− σ2 + 2pn(λ̂n) + hn(λ̂n)

Rn(λ∗n)

≤ GCVn(λ∗n)− σ2 + 2pn(λ̂n) + hn(λ̂n)
Rn(λ∗n)

=
Rn(λ∗n)− 2pn(λ∗n) + 2pn(λ̂n) + hn(λ̂n)− hn(λ∗n)

Rn(λ∗n)

= 1 +
−2pn(λ∗n) + 2pn(λ̂n) + hn(λ̂n)− hn(λ∗n)

Rn(λ∗n)
. (12)

Let An = {i : 2j + 1 ≤ i ≤ n and w2
i > nλ} and Ac

n = {i : 2j + 1 ≤ i ≤ n} \An. Notice that

Rn(λ) =
1
n

2j∑

i=1

ε2i +
1
n

∑

i∈An

(ûi − ui)2 +
1
n

∑

i∈Ac
n

u2
i ≥

1
n

2j∑

i=1

ε2i ∼
2jσ2

n
, (13)

where an ∼ bn means that limn→∞ an/bn = 1. By Lemmas 4 and 5 and inequalities (12) and (13),

we have

lim
n→∞

−2pn(λ∗n) + 2pn(λ̂n) + hn(λ̂n)− hn(λ∗n)
Rn(λ∗n)

= 0 a.s.

Therefore, limn→∞Rn(λ̂n)/Rn(λ∗n) = 1, a.s. 2

Proof for Theorem 2: This follows immediately from the proof for Theorem 1 by observing that

limn→∞ h(λ) = 0 a.s. and that limn→∞ pn(λ) = 0 a.s. 2

3.3. Level dependent thresholding. A more flexible approach, introduced by Johnstone and

Silverman (1997), is to allow the threshold parameter of wavelet shrinkage to be level dependent.

We will consider the following level-dependent BLUPWAVE scheme

ûλ,i =





wi for i = 1, . . . , 2j ,(
1− nλ`

w2
i

)
+

wi for 2` + 1 ≤ i ≤ 2`+1, ` = j, . . . , m.
(14)
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The thresholds, Λ = (λj , . . . , λm), form an array of nonnegative parameters.

Since the GCV score function for level dependent thresholding is multivariate, it is difficult to

minimize. To reduce the multivariate minimization problem to a univariate problem iteratively,

we minimize the GCV score function by coordinatewise descent. This turns the multivariate mini-

mization problem into a sequence of easily solved one dimensional problems. The initial threshold

parameters are set equal to the level independent threshold, i.e., Λ̂0 = (λ̂, . . . , λ̂) and k = 0. The

next iteration, Λ̂k+1 is computed as follows.

• λ̂k+1,m = arg minλm≥0GCV (λ̂k,j , . . . , λ̂k,m−1, λm), λm ← λ̂k+1,m.

• λ̂k+1,m−1 = arg minλm−1≥0GCV (λ̂k,j , . . . , λ̂k,m−2, λm−1, λ̂k+1,m), λm−1 ← λ̂k+1,m−1.
...

• λ̂k+1,j = arg minλj≥0GCV (λj , λ̂k+1,j+1, . . . , λ̂k+1,m), λj ← λ̂k+1,j .

For each level, the golden section search method is used to solve the one dimensional minimization

problem. We found that GCV scores are close to convergence after one iteration of coordinatewise

descent. Furthermore, the average square errors (ASEs) are found to be reduced by this method.

Hence, in principle, one iteration of coordinatewise descent is used in our simulation studies reported

later. The iteration order can go from m to j or from j to m. Our simulation results shows that

different iteration orders are not significantly different.

3.4. GCV selection for the primary resolution level and for the number of vanishing

moments of wavelet basis. Nason (1999) discussed choosing the number of vanishing moments

in the wavelet basis, primary resolution j and the threshold in wavelet shrinkage by cross-validation.

He considered wavelet shrinkage using the universal threshold δ =
√

2 log n σ (with σ = 1 in his

simulation study) and applied the leave-one-out cross-validation method to select the level j as well

as the number of vanishing moments in the basis v. Conditioned on the selected values of (j, v),

he then minimized the leave-one-out cross-validation score function to select the level independent

threshold λ.

To reduce the computational complexity, we use the GCV method to select level dependent

thresholds Λ = (λj , . . . , λm) and parameters (j, v) for the BLUPWAVE. We first compute the min-

imums of the GCV score functions for the BLUPWAVE with a level independent threshold with

respect to all possible values of the primary resolution level ranging from 0 to m and the number of
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vanishing moments of Symmlet basis ranging from 4 to 10, where Symmlet refers to the least asym-

metric wavelet described in Daubechies (1992). The GCV scores are denoted as GCV (λ̂(j, v); j, v),

j = 0, . . . ,m, and v = 4, . . . , 10. Then, we select the primary resolution level ĵ and the number of

vanishing moments v̂ which achieves the minimum among GCV (λ̂(j, v); j, v). Conditioned on the

selected (ĵ, v̂), we then consider the level dependent thresholds and apply the multivariate GCV

method described in the previous section to select the threshold for every level.

3.5. High dimensional data. The above discussion for 1D signals can be extended naturally

to 2D images or higher p-dimensional data. Assume the sample size is n = 2p(m+1). The discrete

wavelet transform and its inverse can be proceeded by taking the tensor product of multiresolution

analysis for one dimensional space. Since the above wavelet shrinkage is performed componentwisely,

the GCV method can be easily applied to select the level independent threshold λ as well as level

dependent thresholds as in 1D cases. For 2D images, the level dependent thresholds are λ`,k,

where k = 1, 2, 3 are indices for horizontal, vertical and diagonal wavelet components respectively,

and ` = j, . . . ,m. For high dimensional cases, the procedures are similar. Moreover, the primary

resolution level j and the number of vanishing moments of wavelet basis v can be adjusted to improve

the performance of reconstruction similarly as in the 1D cases.

4. Simulation results and discussions

4.1. One dimensional signals. Four test signals, Blocks, Bumps, HeaviSine and Doppler,

from Donoho and Johnstone (1994), are used in the simulation study. The periodic Symmlet wavelet

basis over [0, 1] is applied, since these four examples are periodic. The computation is based on the

WaveLab package developed by Donoho, Duncan, Huo, and Levi-Tsabari (1999) for MATLAB.

4.1.1. Level independent thresholding for 1D data. Define the average square error by

ASE =
∑n

i=1{f̂(ti)− f(ti)}2/n and the standardized ASE by

standardized ASE =
1

nσ2

n∑

i=1

{f̂(ti)− f(ti)}2.

Notice that the ASE is the same as the mean square error Rn(·), since f = W ′u and f̂ = W ′û,

where W is the orthogonal matrix associated with the DWT. The GCV/σ2 and ASE/σ2 curves

by BLUPWAVE for four test noisy signals are plotted in Figure 2, where n = 1024 and the signal

to noise ratio is SNR = 7. The SNR is defined by (
√

nσ)−1||f − f̄ ||`2 with f̄ =
∑n

i=1 f(ti)/n.
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Two reference statistics are given for each plot to check the performance of the GCV procedure in

finite samples. They are the difference, diff = minλ GCV (λ)/σ2−minλ ASE(λ)/σ2, and the relative

efficiency

R =
minλ≥0 ASE(λ)

ASE(λ̂)
,

where λ̂ is the GCV selection of λ. Both quantities, diff and R, should approach 1 as n goes to

infinity. The search domain of the threshold parameter, δ2 = nλ, is set to [0, 2σ2 log n]. For the

purpose of presentation, the horizontal axis in Figure 2 is taken to be x = nλ/(σ2 log n), 0 ≤ x ≤ 2.

These four test signals are further studied with sample sizes varying from n = 256 to n = 8192,

SNRs equal to 3, 5, 7 and 10. The Symmlets with 8 vanishing moments are used. The primary

resolution level is j = 5 and the remaining fine scales are all included up to the finest possible

resolution. The averages and standard errors of standardized average square errors based on 100

replication runs with various sample sizes and SNRs are reported in Table 1 for BLUPWAVE and

in Table 2 for soft thresholding. Note that the reported numbers are based on standardized ASEs,

which are ASEs scaled by error variance σ2. In other words, the larger SNR cases have the ASEs

divided by smaller σ2 and result in inflated standardized ASEs. Therefore, the reader may find larger

standardized ASEs for higher SNR cases. The purpose of standardization is to facilitate comparison

of the GCV and ASE curves. Plots of standardized ASEs along with ±1.96 times standard errors

are given in Figure 3. In the case of Blocks, Bumps and Doppler, the BLUPWAVE performs better

than the soft thresholding does, while in the case of HeaviSine both methods perform with the same

quality.

4.1.2. Level dependent thresholding for 1D data. The averages and standard errors of

standardized ASEs based on 100 replications of test signals with various sample sizes and SNRs are

reported in Table 3 for BLUPWAVE and in Table 4 for soft thresholding.

The comparison of standardized ASEs of BLUPWAVE with or without level dependent (LD)

thresholding based on 100 replications when SNR=7 is shown in Figure 4. We observe that the

BLUPWAVE has similar quality of performance for level independent and level dependent thresh-

olding. The primary resolution level here is j = 5. The comparison plots for BLUPWAVE and

soft thresholding are in Figure 5. Again, with level dependent thresholding, the BLUPWAVE has

smaller standardized ASEs than soft thresholding does in most cases.

4.1.3. Adjustment for the primary resolution level and the number of vanishing

12



moments of wavelet basis for 1D data. We take the case of Blocks with n = 1024 and SNR=7

in this simulation as an example. The minimums of GCV/σ2 values for the BLUPWAVE with level

independent thresholding for various values of (j, v) are reported in Table 5. Among these values the

minimum in this table is marked with an asterisk ∗, which corresponds to ĵ = 3 and v̂ = 8. Then,

conditioned on ĵ = 3 and v̂ = 8, the level dependent thresholds λ̂3, . . . , λ̂9 are computed and the

standardized ASE is found to be 0.3054. The corresponding value for the case of level dependent

thresholding with pre-assigned primary resolution level j = 5 and pre-assigned number of vanishing

moments v = 8 is 0.3344 in Table 3. Thus the further adjustment of (j, v) does indeed reduce the

standardized ASE.

The standardized ASE for BLUPWAVE with pre-assigned values j = 5 and v = 8 using level

dependent thresholding (denoted by BLUP/LD) is compared in Figure 6 with the standardized ASE

with further adjustment for (j, v) (BLUP/LD/JV) based on 100 replications and with SNR=7. It

is observed that the GCV selection for j and v do reduce the standardized ASE, especially when n

is small. For the case of SNR=7, the averages and standard errors of standardized ASEs based on

100 replications for various sample sizes are reported in Table 6 for BLUPWAVE and in Table 7 for

soft thresholding. Comparisons of BLUP/LD/JV and SOFT/LD/JV are shown in Figure 7. The

standardized ASEs of BLUP/LD/JV are smaller than those of SOFT/LD/JV in most cases.

4.2. 2D Images. Eight test images are used to investigate the performance of the GCV

selection. They are Lena 512 × 512, Lena 256 × 256, couple 512 × 512, couple 256 × 256, goldhill,

peppers, fishing boat, and Tiffany (the latter four are of size 512 × 512). These images can be

obtained from the web sites at

http://sipi.usc.edu/services/database/database.cgi?volume=misc, and

http://links.uwaterloo.ca/greyset1.base.html.

The original images are shown in Figure 8 and Figure 9. For every image noises, at levels σ = 10,

20 and 40, are added to the images for simulation study. The Daubechies wavelets with 8 vanishing

moments and the smooth padding of DWT extension mode (i.e., first derivative interpolation at

the edges) are used, as the test images are not periodic. The computation is based on the Wavelet

Toolbox for MATLAB.

4.2.1. Level independent thresholding for 2D data. The primary resolution level is

j = m − 3; i.e., j = 5 for the 512 × 512 resolution images and j = 4 for the 256 × 256 resolution

images. The GCV/σ2 and ASE/σ2 curves by BLUPWAVE are plotted in Figure 10 and Figure 11,
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with SNR = 3. The averages and standard errors of standardized ASEs, based on 50 replications

with three noise levels, are reported in Table 8 for BLUPWAVE and soft thresholding. The two

thresholding schemes have similar performance quality.

4.2.2. Level dependent thresholding for 2D data. The averages and standard errors

of standardized ASEs based on 50 replications with three noise levels are reported in Table 9 for

BLUPWAVE and soft thresholding. These standardized ASEs along with ±1.96 times standard

errors are plotted in Figure 12 and Figure 13. We observe that the performance of BLUPWAVE is

better than the soft thresholding.

4.2.3. Adjustment for the primary resolution level and the number of vanishing

moments of wavelet basis for 2D data. The GCV method is used to select level dependent

thresholds, the primary resolution level and the number of vanishing moments of wavelet basis. The

averages and standard errors of standardized ASEs based on 50 replications with three noise levels

are reported in Table 10 for BLUPWAVE and soft thresholding. Figure 14 and Figure 15 are the

standardized ASEs along with ±1.96 times standard errors for BLUPWAVE and soft thresholding.

Again, we observe that the performance of BLUPWAVE is better than the soft thresholding, and

out-performance is especially obvious when the SNRs are small.

5. Concluding discussion

The BLUPWAVE shrinkage scheme is based on the use of best linear unbiased prediction as well

as Bayesian modelling and estimation. The GCV selection for hyperparameters is proposed. Based

on our simulation experience, we find the GCV selection method fast and reliable, and it can also be

applied to the selection of level dependent thresholds, the primary resolution level and the number

of vanishing moments of wavelet basis. With the help of the GCV selection for parameters involved

in the BLUPWAVE scheme, we find that BLUPWAVE performs well. Compared to other Bayesian

shrinkage schemes, the BLUPWAVE has a very simple asymptotic form. Though its derivation and

theoretical background may seem complicated, its final form for shrinkage is really straightforward

and easy to implement.

For one dimensional test signals, BLUPWAVE has smaller standardized ASEs than soft thresh-

olding does. Moreover, the BLUPWAVE has similar performance quality for both the level inde-

pendent thresholding and the level dependent thresholding. Furthermore, standardized ASEs can

be reduced by using GCV to also select the primary resolution level and the number of vanish-

14



ing moments in the wavelet basis. Especially when n is small, the reduction is quite significant.

BLUPWAVE also offers some advantages for denoising 2D images.
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Figure 1: Shrinkage schemes by hard, soft and BLUPWAVE thresholdings.
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Figure 2: The GCV/σ2 and ASE/σ2 curves by BLUPWAVE for four noisy signals when n = 1024

and SNR=7.
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Figure 3: Averages and standard errors of standardized ASEs based on 100 replications of BLUP-

WAVE and soft thresholding, with SNR=7.
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Figure 4: Comparison of standardized ASEs for BLUPWAVE without or with level dependent (LD)

thresholding based on 100 replications, with SNR=7.
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Figure 5: Comparison of the standardized ASEs for BLUPWAVE and soft thresholding with level

dependent (LD) thresholds, with SNR=7.
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Figure 6: Comparison of the standardized ASEs for BLUP/LD (with pre-assigned j = 5 and v = 8)

vs. BLUP/LD/JV (using GCV selection for j and v), with SNR=7.
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Figure 7: Comparison of the standardized ASEs for BLUP/LD/JV vs. SOFT/LD/JV based on 100

replications, with SNR=7.
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Figure 8: Test images used in the study. Top left is for Lena: 512×512, top right is for Lena:

256×256, bottom left is for couple: 512×512, and bottom right is for couple: 256×256.
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Figure 9: Test images used in the study. Top left is for goldhill: 512×512, top right is for peppers:

512×512, bottom left is for boat: 512×512, and bottom right is for Tiffany: 256×256.
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Figure 10: The GCV/σ2 and ASE/σ2 curves for BLUPWAVE. Top left is for Lena: 512×512, top

right is for Lena: 256×256, bottom left is for couple: 512×512, and bottom right is for couple:

256×256.
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Figure 11: The GCV/σ2 and ASE/σ2 curves for BLUPWAVE. Top left is for goldhill: 512×512, top

right is for peppers: 512×512, bottom left is for boat: 512×512, and bottom right is for Tiffany:

256×256.
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Figure 12: Comparison of the standardized ASEs of BLUPWAVE (with level dependent thresholds)

and soft thresholding (with level dependent thresholds) based on 50 replications. Top left is for

Lena: 512×512, top right is for Lena: 256×256, bottom left is for couple: 512×512, and bottom

right is for couple: 256×256.
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Figure 13: Comparison of the standardized ASEs for BLUPWAVE (with level dependent thresholds)

and soft thresholding (with level dependent thresholds) based on 50 replications. Top left is for

goldhill: 512×512, top right is for peppers: 512×512, bottom left is for boat: 512×512, and bottom

right is for Tiffany: 256×256.
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Figure 14: Comparison of the standardized ASEs for BLUP/LD/JV vs. SOFT/LD/JV based on 50

replications. Top left is for Lena: 512×512, top right is for Lena: 256×256, bottom left is for couple:

512×512, and bottom right is for couple: 256×256.
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Figure 15: Comparison of the standardized ASEs for BLUP/LD/JV vs. SOFT/LD/JV based on 50

replications. Top left is for goldhill: 512×512, top right is for peppers: 512×512, bottom left is for

boat: 512×512, and bottom right is for Tiffany: 256×256.
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Table 1: Averages and standard errors of standardized ASEs based on 100 replications for BLUP-
WAVE.

n Blocks Bumps HeaviSine Doppler
SNR=3

256 0.5793 (0.0089) 0.6369 (0.0126) 0.1654 (0.0043) 0.3815 (0.0062)
512 0.4052 (0.0061) 0.4566 (0.0063) 0.0970 (0.0020) 0.2283 (0.0042)
1024 0.2904 (0.0032) 0.3026 (0.0031) 0.0597 (0.0015) 0.1336 (0.0020)
2048 0.1837 (0.0018) 0.1950 (0.0017) 0.0382 (0.0008) 0.0792 (0.0010)
4096 0.1299 (0.0008) 0.1249 (0.0010) 0.0254 (0.0005) 0.0480 (0.0006)
8192 0.0820 (0.0005) 0.0756 (0.0005) 0.0163 (0.0003) 0.0266 (0.0003)

SNR=5
256 0.6408 (0.0114) 0.6569 (0.0105) 0.1989 (0.0037) 0.3946 (0.0065)
512 0.4589 (0.0056) 0.5033 (0.0063) 0.1360 (0.0027) 0.2434 (0.0039)
1024 0.3291 (0.0031) 0.3277 (0.0031) 0.0755 (0.0016) 0.1546 (0.0021)
2048 0.2142 (0.0017) 0.2233 (0.0020) 0.0488 (0.0008) 0.0917 (0.0012)
4096 0.1404 (0.0010) 0.1426 (0.0010) 0.0327 (0.0005) 0.0532 (0.0006)
8192 0.0893 (0.0006) 0.0838 (0.0006) 0.0216 (0.0003) 0.0277 (0.0003)

SNR=7
256 0.6803 (0.0121) 0.7032 (0.0111) 0.2375 (0.0046) 0.4043 (0.0067)
512 0.4781 (0.0062) 0.5194 (0.0061) 0.1661 (0.0029) 0.2486 (0.0038)
1024 0.3549 (0.0037) 0.3507 (0.0029) 0.0897 (0.0015) 0.1646 (0.0021)
2048 0.2309 (0.0019) 0.2446 (0.0018) 0.0606 (0.0008) 0.0999 (0.0014)
4096 0.1475 (0.0009) 0.1542 (0.0010) 0.0391 (0.0006) 0.0540 (0.0008)
8192 0.0932 (0.0006) 0.0889 (0.0006) 0.0255 (0.0003) 0.0287 (0.0003)

SNR=10
256 0.6730 (0.0110) 0.7783 (0.0117) 0.2724 (0.0050) 0.4182 (0.0068)
512 0.4918 (0.0053) 0.5372 (0.0064) 0.1843 (0.0033) 0.2541 (0.0038)
1024 0.3778 (0.0034) 0.3776 (0.0033) 0.1075 (0.0018) 0.1688 (0.0022)
2048 0.2436 (0.0019) 0.2588 (0.0019) 0.0736 (0.0010) 0.1043 (0.0014)
4096 0.1568 (0.0009) 0.1615 (0.0011) 0.0441 (0.0007) 0.0538 (0.0007)
8192 0.0980 (0.0006) 0.0949 (0.0006) 0.0275 (0.0003) 0.0301 (0.0003)
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Table 2: Averages and standard errors of standardized ASEs based on 100 replications for soft
thresholding.

n Blocks Bumps HeaviSine Doppler
SNR=3

256 0.5854 (0.0108) 0.7029 (0.0139) 0.1581 (0.0038) 0.4060 (0.0067)
512 0.4085 (0.0051) 0.5182 (0.0064) 0.0953 (0.0021) 0.2581 (0.0044)
1024 0.3179 (0.0037) 0.3658 (0.0034) 0.0571 (0.0013) 0.1610 (0.0022)
2048 0.2160 (0.0021) 0.2514 (0.0022) 0.0382 (0.0006) 0.1077 (0.0010)
4096 0.1554 (0.0010) 0.1717 (0.0012) 0.0264 (0.0004) 0.0680 (0.0007)
8192 0.1041 (0.0005) 0.1117 (0.0006) 0.0181 (0.0003) 0.0408 (0.0004)

SNR=5
256 0.6809 (0.0112) 0.7760 (0.0141) 0.1940 (0.0036) 0.4542 (0.0073)
512 0.5009 (0.0066) 0.5806 (0.0060) 0.1333 (0.0025) 0.2985 (0.0049)
1024 0.3876 (0.0044) 0.4181 (0.0038) 0.0785 (0.0015) 0.1949 (0.0025)
2048 0.2648 (0.0024) 0.2976 (0.0024) 0.0532 (0.0007) 0.1276 (0.0012)
4096 0.1865 (0.0012) 0.2017 (0.0013) 0.0370 (0.0005) 0.0792 (0.0008)
8192 0.1252 (0.0007) 0.1300 (0.0007) 0.0258 (0.0003) 0.0469 (0.0005)

SNR=7
256 0.7528 (0.0144) 0.8315 (0.0163) 0.2368 (0.0044) 0.4915 (0.0078)
512 0.5392 (0.0068) 0.6162 (0.0068) 0.1683 (0.0033) 0.3160 (0.0045)
1024 0.4260 (0.0041) 0.4537 (0.0038) 0.0960 (0.0012) 0.2185 (0.0036)
2048 0.2947 (0.0025) 0.3274 (0.0024) 0.0666 (0.0008) 0.1408 (0.0012)
4096 0.2055 (0.0012) 0.2203 (0.0012) 0.0454 (0.0005) 0.0859 (0.0009)
8192 0.1385 (0.0006) 0.1420 (0.0008) 0.0315 (0.0003) 0.0507 (0.0004)

SNR=10
256 0.7923 (0.0158) 0.9196 (0.0239) 0.2793 (0.0060) 0.5215 (0.0077)
512 0.5913 (0.0083) 0.6545 (0.0076) 0.1998 (0.0048) 0.3428 (0.0055)
1024 0.4665 (0.0043) 0.4861 (0.0042) 0.1187 (0.0021) 0.2368 (0.0038)
2048 0.3246 (0.0026) 0.3511 (0.0025) 0.0823 (0.0010) 0.1541 (0.0016)
4096 0.2271 (0.0014) 0.2376 (0.0012) 0.0541 (0.0006) 0.0918 (0.0009)
8192 0.1529 (0.0007) 0.1552 (0.0008) 0.0372 (0.0004) 0.0552 (0.0005)
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Table 3: Averages and standard errors of standardized ASEs based on 100 replications for BLUP-
WAVE with level dependent thresholds.

n Blocks Bumps HeaviSine Doppler
SNR=3

256 0.5632 (0.0081) 0.6207 (0.0102) 0.1795 (0.0052) 0.3818 (0.0064)
512 0.3880 (0.0051) 0.4520 (0.0054) 0.1045 (0.0022) 0.2268 (0.0039)
1024 0.2696 (0.0026) 0.2876 (0.0029) 0.0606 (0.0014) 0.1272 (0.0019)
2048 0.1641 (0.0017) 0.1769 (0.0016) 0.0386 (0.0009) 0.0728 (0.0010)
4096 0.1102 (0.0008) 0.1030 (0.0009) 0.0238 (0.0006) 0.0432 (0.0007)
8192 0.0663 (0.0005) 0.0593 (0.0004) 0.0144 (0.0003) 0.0220 (0.0003)

SNR=5
256 0.6296 (0.0102) 0.6596 (0.0104) 0.2087 (0.0044) 0.3999 (0.0066)
512 0.4371 (0.0056) 0.4977 (0.0056) 0.1389 (0.0028) 0.2465 (0.0039)
1024 0.3088 (0.0030) 0.3206 (0.0027) 0.0743 (0.0015) 0.1500 (0.0018)
2048 0.1977 (0.0017) 0.2071 (0.0018) 0.0481 (0.0009) 0.0867 (0.0013)
4096 0.1235 (0.0010) 0.1216 (0.0010) 0.0306 (0.0006) 0.0480 (0.0007)
8192 0.0775 (0.0005) 0.0679 (0.0005) 0.0197 (0.0003) 0.0237 (0.0003)

SNR=7
256 0.6507 (0.0110) 0.6966 (0.0101) 0.2404 (0.0050) 0.4074 (0.0073)
512 0.4562 (0.0056) 0.5153 (0.0055) 0.1639 (0.0029) 0.2537 (0.0036)
1024 0.3328 (0.0030) 0.3441 (0.0030) 0.0901 (0.0016) 0.1623 (0.0020)
2048 0.2141 (0.0018) 0.2295 (0.0019) 0.0587 (0.0011) 0.0950 (0.0013)
4096 0.1329 (0.0009) 0.1355 (0.0010) 0.0353 (0.0006) 0.0486 (0.0007)
8192 0.0822 (0.0005) 0.0733 (0.0005) 0.0229 (0.0003) 0.0251 (0.0003)

SNR=10
256 0.6496 (0.0089) 0.7622 (0.0107) 0.2720 (0.0052) 0.4238 (0.0070)
512 0.4748 (0.0047) 0.5285 (0.0059) 0.1800 (0.0033) 0.2599 (0.0037)
1024 0.3573 (0.0031) 0.3738 (0.0034) 0.1079 (0.0017) 0.1696 (0.0022)
2048 0.2303 (0.0017) 0.2469 (0.0018) 0.0694 (0.0011) 0.0988 (0.0014)
4096 0.1432 (0.0010) 0.1465 (0.0010) 0.0406 (0.0006) 0.0484 (0.0007)
8192 0.0874 (0.0005) 0.0807 (0.0005) 0.0256 (0.0003) 0.0265 (0.0003)
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Table 4: Averages and standard errors of standardized ASEs based on 100 replications for soft
thresholding with level dependent thresholds.

n Blocks Bumps HeaviSine Doppler
SNR=3

256 0.5495 (0.0080) 0.6701 (0.0112) 0.1639 (0.0039) 0.3987 (0.0066)
512 0.3778 (0.0047) 0.4859 (0.0055) 0.0995 (0.0024) 0.2452 (0.0043)
1024 0.2698 (0.0034) 0.3146 (0.0036) 0.0566 (0.0014) 0.1388 (0.0018)
2048 0.1672 (0.0018) 0.1946 (0.0018) 0.0363 (0.0007) 0.0838 (0.0011)
4096 0.1136 (0.0007) 0.1122 (0.0008) 0.0228 (0.0005) 0.0493 (0.0006)
8192 0.0706 (0.0004) 0.0657 (0.0004) 0.0144 (0.0002) 0.0261 (0.0003)

SNR=5
256 0.6438 (0.0100) 0.7436 (0.0127) 0.1985 (0.0040) 0.4508 (0.0072)
512 0.4555 (0.0053) 0.5559 (0.0055) 0.1326 (0.0025) 0.2918 (0.0045)
1024 0.3293 (0.0034) 0.3707 (0.0036) 0.0732 (0.0013) 0.1688 (0.0023)
2048 0.2145 (0.0023) 0.2346 (0.0019) 0.0486 (0.0009) 0.1028 (0.0011)
4096 0.1406 (0.0010) 0.1371 (0.0009) 0.0305 (0.0005) 0.0577 (0.0007)
8192 0.0890 (0.0005) 0.0782 (0.0005) 0.0201 (0.0003) 0.0296 (0.0003)

SNR=7
256 0.6986 (0.0117) 0.7988 (0.0143) 0.2358 (0.0047) 0.4815 (0.0072)
512 0.4919 (0.0059) 0.5898 (0.0063) 0.1621 (0.0033) 0.3134 (0.0044)
1024 0.3642 (0.0032) 0.4095 (0.0038) 0.0914 (0.0013) 0.1902 (0.0037)
2048 0.2408 (0.0024) 0.2621 (0.0019) 0.0596 (0.0010) 0.1147 (0.0013)
4096 0.1584 (0.0010) 0.1555 (0.0009) 0.0366 (0.0005) 0.0618 (0.0007)
8192 0.0999 (0.0005) 0.0873 (0.0005) 0.0243 (0.0003) 0.0323 (0.0003)

SNR=10
256 0.7396 (0.0119) 0.8758 (0.0178) 0.2777 (0.0067) 0.5139 (0.0076)
512 0.5406 (0.0058) 0.6289 (0.0075) 0.1903 (0.0047) 0.3361 (0.0051)
1024 0.3995 (0.0034) 0.4416 (0.0043) 0.1115 (0.0017) 0.2125 (0.0036)
2048 0.2653 (0.0020) 0.2887 (0.0019) 0.0715 (0.0010) 0.1262 (0.0015)
4096 0.1763 (0.0011) 0.1743 (0.0009) 0.0442 (0.0006) 0.0653 (0.0007)
8192 0.1119 (0.0005) 0.0980 (0.0005) 0.0290 (0.0004) 0.0348 (0.0003)
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Table 5: The minimums of GCV/σ2 values for various primary resolution levels (j), and the number
of vanishing moments of Symmlets (v). Test data is the noisy Blocks with n = 1024 and SNR=7.

the number of vanishing moments, v
j 4 5 6 7 8 9 10
0 1.34384 1.36370 1.42276 1.35806 1.30824 1.45862 1.50087
1 1.34379 1.36369 1.42273 1.35442 1.30823 1.46090 1.50085
2 1.34378 1.36366 1.42272 1.35430 1.30823 1.46083 1.50084
3 1.34366 1.36357 1.42248 1.35496 *1.30802 1.46008 1.49940
4 1.34263 1.36597 1.41981 1.35107 1.31140 1.45830 1.49811
5 1.34064 1.35137 1.39775 1.34341 1.40833 1.44583 1.49015
6 1.32112 1.34952 1.37714 1.33316 1.36415 1.41922 1.46039
7 1.32823 1.38788 1.37893 1.35368 1.37244 1.47803 1.50491
8 1.50028 1.53409 1.54756 1.43989 1.45617 1.59628 1.60713
9 2.09728 2.17332 2.14222 1.96848 2.00363 2.22018 2.22672

Table 6: Averages and standard errors of standardized ASEs based on 100 replications of
BLUP/LD/JV for various sample sizes and SNR=7.

n Blocks Bumps HeaviSine Doppler
256 0.5975 (0.0089) 0.6916 (0.0090) 0.1915 (0.0049) 0.3758 (0.0070)
512 0.4143 (0.0049) 0.4978 (0.0054) 0.1318 (0.0026) 0.2436 (0.0035)
1024 0.2992 (0.0027) 0.3235 (0.0033) 0.0750 (0.0015) 0.1493 (0.0023)
2048 0.1963 (0.0017) 0.2123 (0.0017) 0.0524 (0.0010) 0.0903 (0.0014)
4096 0.1176 (0.0009) 0.1167 (0.0008) 0.0337 (0.0005) 0.0440 (0.0006)
8192 0.0736 (0.0004) 0.0662 (0.0005) 0.0179 (0.0003) 0.0242 (0.0003)

Table 7: Averages and standard errors of standardized ASEs based on 100 replications of
SOFT/LD/JV for various sample sizes and SNR=7.

n Blocks Bumps HeaviSine Doppler
256 0.6552 (0.0099) 0.7723 (0.0125) 0.1883 (0.0039) 0.4440 (0.0072)
512 0.4635 (0.0051) 0.5802 (0.0060) 0.1320 (0.0024) 0.3096 (0.0044)
1024 0.3357 (0.0036) 0.3770 (0.0035) 0.0819 (0.0014) 0.1860 (0.0022)
2048 0.2309 (0.0018) 0.2579 (0.0021) 0.0544 (0.0009) 0.1150 (0.0014)
4096 0.1460 (0.0011) 0.1525 (0.0009) 0.0353 (0.0004) 0.0610 (0.0007)
8192 0.0987 (0.0005) 0.0869 (0.0005) 0.0217 (0.0003) 0.0334 (0.0004)
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Table 8: Averages and standard errors of standardized ASEs for BLUPWAVE and soft thresholding,
based on 50 replications.

SNR BLUP SOFT
Lena : 512 × 512

4.8 0.340299 (0.000450) 0.349786 (0.000615)
2.4 0.190690 (0.000177) 0.195083 (0.000294)
1.2 0.103531 (0.000147) 0.100750 (0.000108)

Lena : 256 × 256
4.4 0.512849 (0.001975) 0.511180 (0.002163)
2.2 0.312310 (0.000738) 0.310408 (0.000894)
1.1 0.167269 (0.000283) 0.161216 (0.000311)

couple : 512 × 512
4.0 0.489354 (0.000943) 0.488529 (0.001050)
2.0 0.284726 (0.000430) 0.290842 (0.000505)
1.0 0.151385 (0.000151) 0.151266 (0.000203)

couple : 256 × 256
3.2 0.390904 (0.000878) 0.395889 (0.001103)
1.6 0.227962 (0.000370) 0.228002 (0.000450)
0.8 0.127576 (0.000493) 0.118677 (0.000213)

goldhill : 512 × 512
4.9 0.546266 (0.001329) 0.528330 (0.001549)
2.5 0.274588 (0.000271) 0.272021 (0.000403)
1.2 0.125817 (0.000122) 0.121537 (0.000119)

peppers : 512 × 512
5.7 0.386394 (0.000681) 0.392051 (0.000695)
2.9 0.199743 (0.000174) 0.206665 (0.000255)
1.4 0.106592 (0.000168) 0.106369 (0.000119)

boat : 512 × 512
5.2 0.446919 (0.001080) 0.450541 (0.000817)
2.6 0.267619 (0.000292) 0.270649 (0.000479)
1.3 0.142249 (0.000139) 0.140604 (0.000161)

Tiffany : 256 × 256
2.6 0.365157 (0.001003) 0.364561 (0.000942)
1.3 0.202361 (0.000328) 0.200073 (0.000448)
0.7 0.110993 (0.000483) 0.100582 (0.000206)
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Table 9: Averages and standard errors of standardized ASEs for BLUPWAVE and soft thresholding
with level dependent thresholds, based on 50 replications.

SNR BLUP SOFT
Lena : 512 × 512

4.8 0.306159 (0.000320) 0.342088 (0.000532)
2.4 0.161366 (0.000174) 0.190043 (0.000244)
1.2 0.086905 (0.000103) 0.098783 (0.000103)

Lena : 256 × 256
4.4 0.502055 (0.001207) 0.501758 (0.001958)
2.2 0.279845 (0.000513) 0.303544 (0.000779)
1.1 0.142318 (0.000256) 0.158422 (0.000283)

couple : 512 × 512
4.0 0.456290 (0.000789) 0.483463 (0.000985)
2.0 0.255461 (0.000243) 0.288218 (0.000467)
1.0 0.135795 (0.000148) 0.150638 (0.000195)

couple : 256 × 256
3.2 0.356370 (0.000617) 0.389875 (0.000988)
1.6 0.198796 (0.000365) 0.225111 (0.000404)
0.8 0.106527 (0.000225) 0.118094 (0.000218)

goldhill : 512 × 512
4.9 0.499870 (0.000789) 0.519145 (0.001434)
2.5 0.239473 (0.000217) 0.268232 (0.000366)
1.2 0.109399 (0.000098) 0.120945 (0.000120)

peppers : 512 × 512
5.7 0.357637 (0.000400) 0.384949 (0.000614)
2.9 0.172366 (0.000143) 0.203351 (0.000227)
1.4 0.088847 (0.000098) 0.105482 (0.000117)

boat : 512 × 512
5.2 0.400942 (0.000550) 0.443362 (0.000743)
2.6 0.229787 (0.000284) 0.266316 (0.000424)
1.3 0.120199 (0.000120) 0.139164 (0.000144)

Tiffany : 256 × 256
2.6 0.330946 (0.000707) 0.354760 (0.000825)
1.3 0.172339 (0.000321) 0.194962 (0.000384)
0.7 0.091885 (0.000215) 0.099395 (0.000216)

39



Table 10: Averages and standard errors of standardized ASEs for BLUP/LD/JV and SOFT/LD/JV,
based on 50 replications.

SNR BLUP SOFT
Lena : 512 × 512

4.8 0.306159 (0.000320) 0.342088 (0.000532)
2.4 0.161366 (0.000174) 0.190043 (0.000244)
1.2 0.086905 (0.000103) 0.098783 (0.000103)

Lena : 256 × 256
4.4 0.502055 (0.001207) 0.501758 (0.001958)
2.2 0.279845 (0.000513) 0.303544 (0.000779)
1.1 0.142318 (0.000256) 0.158422 (0.000283)

couple : 512 × 512
4.0 0.456290 (0.000789) 0.483463 (0.000985)
2.0 0.255461 (0.000243) 0.288218 (0.000467)
1.0 0.135795 (0.000148) 0.150638 (0.000195)

couple : 256 × 256
3.2 0.356370 (0.000617) 0.389875 (0.000988)
1.6 0.198796 (0.000365) 0.225111 (0.000404)
0.8 0.106527 (0.000225) 0.118094 (0.000218)

goldhill : 512 × 512
4.9 0.499870 (0.000789) 0.519145 (0.001434)
2.5 0.239473 (0.000217) 0.268232 (0.000366)
1.2 0.109399 (0.000098) 0.120945 (0.000120)

peppers : 512 × 512
5.7 0.357637 (0.000400) 0.384949 (0.000614)
2.9 0.172366 (0.000143) 0.203351 (0.000227)
1.4 0.088847 (0.000098) 0.105482 (0.000117)

boat : 512 × 512
5.2 0.400942 (0.000550) 0.443362 (0.000743)
2.6 0.229787 (0.000284) 0.266316 (0.000424)
1.3 0.120199 (0.000120) 0.139164 (0.000144)

Tiffany : 256 × 256
2.6 0.330946 (0.000707) 0.354760 (0.000825)
1.3 0.172339 (0.000321) 0.194962 (0.000384)
0.7 0.091885 (0.000215) 0.099395 (0.000216)
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