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Inference for Shift Functions in the Two-Sample 
Problem With Right-Censored Data: With Applications 

Henry H. S. Lu, Martin T. WELLS, and Ram C. TIWARI* 

For two distribution functions, F and G, the shift function is defined by A(t) = G- F(t) - t. The shift function is the distance 
from the 450 line and the quantity plotted in Q-Q plots. In the analysis of lifetime data, A represents the difference between two 
treatments. The shift function can also be used to find crossing points of two distribution functions. The large-sample distribution 
theory for estimates of A is studied for right-censored data. It turns out that the asymptotic covariance function depends on the 
unknown distribution functions F and G; hence simultaneous confidence bands cannot be directly constructed. A construction of 
simultaneous confidence bands for A is developed via the bootstrap. Construction and application of such bands are explored for 
the Q-Q plot. 
KEY WORDS: Bootstrap; Censored data; Crossing points; Q-Q plots; Shift function; Treatment effect; Two-sample problems. 

1. INTRODUCTION 

Suppose that F and G denote the distribution functions of 
random variables X and Y. For the distributions F and G, the 
horizontal shift (or translation) function is defined by 

/\(t)-G-1 o F(t) -t.(1 

Analogously, we can define the vertical shift as 

,\t(t) _ G F-(t) - t. (2) 

These shifts are important measures in the analysis of survival 
data. In the analysis of lifetime data, it is often necessary to 
estimate the difference between treatments. Suppose that X is 
the control and Y is the treatment; in such a situation, the 
lifetimes of the treatment and control groups can be compared. 
Doksum (1974) proved that the shift function A( * ) in (1) is 
the unique function such that X + /\(X) =d Y; that is, 
X + /\(X) equals Y in distribution. If /\(X) -A, a constant, 
then the model reduces to a linear model; otherwise, it is 
a nonlinear model. Obviously, /\(X) = 0 if and only if F 
= G. Doksum proposed an empirical estimator, Z\N(t) 

= G F,(t) - t, of zA and proved its weak convergence; 
where N = m + n, Fn is the empirical distribution function 
(edf) of a sample of size n from F and G`2 is the empirical 
quantile function (eqf), the inverse of Gm. Doksum and 
Sievers (1976) constructed simultaneous confidence bands 
for zA in the case of no censoring. The derivation of their 
bands depends on certain approximating assumptions. Hol- 
lander and Korwar (1982) and Wells and Tiwari (1989a) 
extended the results of Doksum (1974) to the nonparametric 
Bayesian framework. These results seem to lead us to the 
possibility of constructing simultaneous confidence bands 
for zA. 

When zA( * ) A, it is easy to see that zA is the median of 
the distribution of Y - X. Meng, Bassiakos, and Lo (1991) 
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studied large-sample properties of the censored data analog 
of the Hodges and Lehmann (1963) estimator of A\. Their 
results are somewhat restrictive, as they assumed that A( * ) 
is constant, which is the case in the analysis of a treatment 
effect but not in general, however. Padgett and Wei (1980) 
and Wei and Gail (1983) studied the two-sample scale 
problem with censored data. Wang and Hettmansperger 
(1990) gave related results on two-sample inference for me- 
dian survival times based on one-sample procedures for 
censored data. 

The functions zA(t) and At (t) also play an important 
role in graphical statistics. Graphical methods are very 
powerful tools for data analysis. The compatibility of the 
proposed model with the observed data may be determined 
easily by a graphical examination of the fit. Two well- 
known plots for goodness of fit are the quantile (Q-Q) plots 
and the probability (P-P) plots. These were discussed in 
detail by Wilk and Gnanadesikan (1968). The function zA 
is the distance from the 450 line and the quantity plotted 
in the Q-Q plots. If F = G, then the Q-Q plot is a 450 
straight line; otherwise, the plot is in a different shape. 
Such a plot would be useful when comparing survival 
functions. A simultaneous confidence band would display 
more information than the simple Q-Q plot. But the lim- 
iting distribution theory shows that the asymptotic co- 
variance function depends on the unknown distribution 
functions F and G; hence the band cannot be directly con- 
structed. A bootstrap solution to this problem is discussed 
in Section 2. 

Assume that the sequence {IX } X i= of survival times is iid 
from a continuous df F on [0, oo) and that the sequence 
{ C1 } I of censoring times is iid from a continuous df HI on 
[0, oo). Furthermore, suppose that the Cl's are independent of 
the X?'s. The observed data are { Xi, bi }I, where bi = 0 [X? 
< Ci] is the indicator function for the event and Xi = X? A 
C = min { X?, Cl }. This model is useful when the observations 
are incomplete due to random censoring. The product limit 
(PL) estimator of the survival function, F ( =1 - F), proposed 
by Kaplan and Meier (1958) is defined as 
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1 -Fn(t)= xni-i [i - -+ I 
{Xnt}[ n + 

~~ [1 - ~~~n:z ~(3) 

where Xn:i < Xn: 2 < ? . < are the order statistics of 
Xi, X2,... , Xn and n:j are the induced order statistics (i.e., 
bn:i is the 3, corresponding to Xn:l). When there is no cen- 
soring, bi = 1 for all i, and the PL estimator in (3) reduces 
to the empirical survival function (1 - Fn). Special attention 
shall be paid to the case lim,t,> [1 - F(t)] =A 0 when the 
last ordered observation Xn:n is censored; that is, when bn:n 
= 0. We will redefine [1 - Fn(t)] = 0 for t ? Xn:n in this 
case. The PL estimator has many desirable properties, in- 
cluding consistency and asymptotic normality, and is the 
generalized maximum likelihood estimator (see Miller 1981, 
p. 57). 

In this article we construct a nonparametric method to 
test the difference of characteristics of two independently 
censored samples using an estimate of zA(-). First, we have 
to discuss a model of random censorship for the two-sample 
case. In the first sample, the observed data are { (Xi, 
bi) }=1, where bi = O [XQ < Ci ] and Xl = X? A Ci as discussed 
previously. In the second sample, assume that the sequence 
{ YT }1 of survival times is iid from a continuous df G on 
[0, oo ) and that the sequence { DJ } JT I of censoring times is 
iid from a continuous df H2 on [0, oo). Furthermore, suppose 
that the Dj's are independent of the Yj5's. The observed 
data for the second sample is { (Yj, yj) }I I, where -yj 
= [Yjo < Dj] and Yj = YJo A Dj. In addition, assume that 
these two samples are independent. We develop a proce- 
dure to test whether F = G, based on the censored data 
{(Xi, bi) }7= l and { (Yj, yj) }7 I. We use the bootstrap meth- 
odology to construct simultaneous confidence bands for the 
function /\(t). 

The validity of the bootstrap has been demonstrated by 
Bickel and Freedman (1981) and Gill (1989). Akritas (1986) 
extended the results of Bickel and Freedman (1981) to cover 
censored data problems. Wells and Tiwari (1989b) showed 
the asymptotic consistency of the Bayesian bootstrap with 
censored data. These results show that the bootstrap of the 
PL estimator and nonparametric Bayes estimator are both 
valid and asymptotically equivalent. There are two possible 
resampling schemes for this problem, one proposed by Efron 
(1981) and the other suggested by Reid (1981). Efron (1981) 
resampled {Xj?*}=I iid from Fn (the edf of {X?}I1), 
{ C7* }7J= I iid from Hin (the edf of { C1 } I=i) and then used 
the Kaplan-Meier estimator for Fn corresponding to the 
new data {(XJ, b37)}j = where X* = X?'* A Y7?* and 
3 * = O [X? * > _l?* ]Y. Efron showed that his scheme is equiv- 
alent to resampling { (X7, 37J) }2m= with replacement from 
{(Xi, bi) }I 7= 1. Based on this new data { (XJ*, 3) }, one 
can construct the bootstrap PL estimator. Reid (1981) re- 
sampled the new data iid from the PL estimator and then 
used them to construct the bootstrap estimator. Reid's plan 
used a limit process diffierent from that of the original PL 
estimator. Akritas (1986) showed that Reid's approach does 

not generate correct asymptotic confidence bands but that 
Efron's approach does. Consequently, Efron's approach is 
the procedure to follow. Akritas (1986) also showed how to 
construct appropriate confidence bands under Efron's sam- 
pling scheme. 

In this article we give the construction of simultaneous 
confidence bands for the horizontal distance between two 
distribution functions, zA(-). In Section 2 we provide the 
necessary distribution theory and construction. In Section 3 
we illustrate the proposed procedure with some examples 
and study the size and power of the corresponding goodness- 
of-fit procedure. In the Appendix we present most of the 
proofs along with some general results about bootstrapping 
functional of the PL estimator. 

2. BOOTSTRAPPED SHIFT FUNCTIONS AND Q-Q 
PLOTS FOR CENSORED DATA 

In this section we develop a nonparametric graphical pro- 
cedure to test the difference between two independent cen- 
sored samples. Let F and G be continuous distribution func- 
tions on [0, oo ). The horizontal distance between the two 
distribution functions is defined in (1). As mentioned earlier, 
Doksum (1974) proved that the shift function A( * ) in (1) is 
the unique function such that X + /\(X) equals Y in distri- 
bution. Hence this distance gives a measure that characterizes 
the difference between the distribution functions F and G. 
A common approach to assessing the magnitude of zA is by 
an inspection of a graphical procedure, as in Q-Q plots. But 
as with any graphical procedure, any inference about the 
parameter of interest may be influenced by the viewer's in- 
terpretation. Therefore, it is of interest to study the significant 
deviations of estimates of zA from a particular value (such as 
0). In this section we construct simultaneous confidence 
bands that accomplish this goal. Doksum and Sievers ( 1976) 
constructed approximate simultaneous confidence bands for 
,A in the case of no censoring; we extend these results to the 
case of censored data. This extension is not at all trivial. The 
limiting distribution theory shows that the asymptotic co- 
variance function depends on the unknown distribution 
functions F and G; hence the simultaneous confidence bands 
cannot be directly constructed. A bootstrap solution to this 
problem is proposed. These simultaneous confidence bands 
also give a method to assess whether a treatment effect is 
constant or is varying as a function of time. This new method 
is applied in Section 3. 

We suppose that the data { (Xi, bi )}i and { ( ?yj ̂yj) } Ji=I 
are randomly right-censored data from F and G. Let Fn and 
Gm be the corresponding PL estimators of F and G. Define 
the PL quantile estimator of G as G; (`t) = inf{ x: Gm (x) 
> t }. Hence define the PL shift estimator of zA as 

,tmn( t) = G-m' - Pn( t) -t . (4) 

Following the approach of Efron (1982), we construct the 
bootstrap samples (XJ*, 7*) }n and { (Yj*, y7) }ljm= I from 
{ (Xi, 3i) }i= and { (YJ, Y)}i. Basedon thebootstrap sam- 
ples, define the corresponding PL estimators of F and G by 
Fn* and Gm. Similarly, define the bootstrap PL quantile es- 
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timator of G as G* -. Hence define the bootstrap PL shift 
estimator of A as 

*n(t) = G* l F*(t) - t. (5) 

Before constructing the simultaneous confidence bands 
for A in the case of censoring, we need to prove the weak 
convergence of the bootstrapped shift process 

DN [Amn(t) -Amn(t)] 

mn 
n 

- G' 

-\v1 N [G*- F*(t) - Fn(t)], (6) 

where N = m + n. The preliminary tools for the proof of 
the convergence of this bootstrapped process are given in 
the Appendix. These results are complicated and involve 
some abstract concepts from topological vector space theory 
and empirical process theory. The interested reader may find 
the methodology in the proofs quite illuminating. 

The weak convergence of this bootstrapped process with 
censored data is as follows. Let T, and T2 be finite constants 
such that [1 - F(T1)][1 - H1(T1)] > 0 and [1 - G(T2)] 
[1 -H2 ( T2) ] > 0. As convention, we use the following no- 
tations: =d, --*'1, d, *a.s.,, == to mean equal in dis- 
tribution, convergence in sup norm 11 - 11, converge in distri- 
bution, converge almost surely, converge in probability and 
weak convergence. Let D[a, b], the space of cadlag real- 
valued functions on the interval [a, b]. The first result is 
the weak convergence of the bootstrapped shift process. 

Theorem 2.1. Let g be the probability density function 
of G. Assume that g(G-1( )) is continuous and bounded 
away from 0 on [0, T21. Then 

DNI(t) Z(t)/go G lF(t) as m A n - oo 

and n/N--&0[O,1] (7) 

on D [0, T, ], where Z( - ) is a mean 0 Gaussian process with 
covariance function 

C(s, t) = (1 - O)CI(s, t) + 9C2(G-1 O F(s),G-1 F(t), 

for s, t E [O, Ti], 

where Cl(*, * ) and C2(*, *) are defined in Lemma A.3 and 
Corollary A.6. 

Using Theorem 2. 1, we can construct the bootstrap con- 
fidence bands for the shift process A( - ) based on A\mn. The 
construction for two-sample case is analogous to that for the 
one-sample case of Akritas (1986). We outline this construc- 
tion in the remainder of this section. The first matter to 
address is estimating the denominator in (7). At first glance, 
it seems difficult to estimate g - G- F. But from the proofs 
of Theorem 2.1 and Theorem A.5, note that d(Q o F) = dG-1 
- F = I /g - G-' 1 F, where 0(*) = (*)-I is the inverse func- 
tion. To have the needed differentiability, we must develop 
a smooth version of Gml'. Padgett ( 1986) and Lio and Padgett 
(1992) studied a kernel-type smoothed estimator of the 
quantile function of the PL estimator for censored data, de- 

duced its asymptotic convergence, and addressed the band- 
width selection issue. The following methodology was sug- 
gested. Choose a kernel K that is a probability density 
function with a finite support that is symmetric about 0 and 
satisfies a Lipschitz condition. Let { hm } be the bandwidth 
sequence of positive numbers such that hm -O 0 as m -* oo. 
Let Q G1 and Qm GM . Define the kernel-type quantile 
function estimator for 0 < p < 1 as 

Qm(p) = hQ' C Qm(t)K((t - p)/hm) dt 

m G 

= hm1 J Ym:j f K((t -p)/hm) dt, 
J= I )_ 

where Go = 0 and GJ = Gm(Ym:j) forj = 1, 2, . . ., m. Fur- 
thermore, 

rGJ 
f K((t - p)/hm) dt = 0, if Ymij is censored, 

= hm[K*((Gj-p)/hm) 

- K*((Gj - p)/hm)] 
otherwise, 

where K*( - ) denotes the cdf of K. 
For our application, we need to differentiate this estimate, 

following Sheather and Marron (1990). The estimate of the 
derivative of Qm is 

dQm (p) =-hm2 - (t)K( ( -p)/hm) dt 

m {G, 
=-h-2 2 Ym:j K") ((t - p)/hm) dt, (8) 

j= I 
where K('), the first derivative of K, is assumed to exist. 
It may be shown using the foregoing results that if hm 
= O(m- 1/5), then dQm(*) -,p dQ(*). Hence, using these 
arguments, we propose to estimate dQ - F = dG' F 
= 1 /g- G-' - Fby dQm - Fn. The consistency of this estimator 
follows from the results of Sheather and Marron (1990). Us- 
ing the foregoing, we can construct the bootstrap confidence 
bands of Amn as follows. 

Theorem 2.2. Suppose that dQm - Fn(t) * 0 for any t 
&[0, T1], the bandwidth hm = O(m-15), and c*,(A) is 
chosen so that for some fixed a, 0 < a < 1, 

Pr \m sup (1[ *mn (t) -Zmn,(t)]l[dQm-o F(t)I|) 

? cn(,z) I{(Xi, bi) }i, { (Yi, Yi)}Th = 1 -1a. 

Then 

Pr{z 1mnn(t)- Cmn(Z/)[dQm -Fn(t)] ? l(t) mn 

<Amn(t)+ _I ._ Cmn(A)[dQm-] n(0), 

V t & [0, T ]} -$ 1 - a. 
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From this theorem, it is clear that 

{ ?mn~(t) - N C* n(?A)[dQm mn 

/\mn(t) + \ C* n(/\)[dQm - F~n(t)]} (9) mn 

gives the simultaneous confidence bands for zA( t) with 
asymptotic coverage probability (1 - a). We show the use- 
fulness of this method in the next section. Furthermore, it 
is not difficult to see that these results are also applicable to 
one-sided tests as well as to the two-sided tests in the theorem, 
such as testing F > G or F < G. 

The methodology developed here could be easily modified 
to work for any increasing function estimate. Hence our 
techniques may be applied in a variety of situations. Da- 
browska, Doksum, and Song (1989) studied a graphical 
comparison of cumulative hazards (an increasing function) 
for the two-sample problem with censored data. We are cur- 
rently investigating the application of the technique to the 
comparison of two Lorenz curves. 

The results of this section may be used to extend the work 
of Hawkins and Kochar (1991) on the estimation of the 
crossing point of two cdf's to the case of censored data. Sup- 
pose that there is a unique estimated crossing point, say at 
t = t *n; then Zmn( t *n) = 0. It is easy to deduce the properties 
of tM*n via the mean value theorem by noting that if t* is the 
true unique crossing point, then 

/\mn(tM*n= /?mn(t*) + (t*n- t*)A'(0) + op(N-112) = , 

where I - t*I < It *n -t*. Hence it follows that the 
behavior of (t*n - t*) can be expressed in terms of the pro- 
cess ZAmn( t*), which has already been analyzed in Theorem 
2. 1. The measures developed by Hawkins and Kochar (199 1) 
are essentially continuous functionals of ZAmn( ( ); therefore, 
an application of the continuous mapping theorem to our 
weak convergence results will extend their results to the case 
of censored data. Granted, this argument is extremely heu- 
ristic; however, it could be made rigorous with a bit of work. 

3. NUMERICAL STUDIES 

As a demonstration of the proposed methodology, we 
consider one real data illustration and three simulated ex- 
amples. We also examine the level and power of the Q-Q 
procedure when viewed as a formal goodness-of-fit test. 

The first problem encountered in these Monte Carlo sim- 
ulation studies is the choice of a smooth kernel and band- 

Table 1. The Three Examples Used in the Monte Carlo Studies 

First sample Second sample 

F Hi G H2 

Example 1 exp(1) U[O, 2.231 6] exp(1) U[O, 2.231 6] 
Example 2 exp(1) U[O, 2.2316] exp(2) U[O, 1.1158] 
Example 3 exp(1) U[O, 2.231 6] exp(1) U[O, 4.9651] 

CD . C C~~~~~~~~~~~~~~~~.. . . .. ... ... 

C0 
00 0 2 0 4 0 6 0 8 1 0 1 2 1 4 1 6 1 8 2 0 

t 

Figure 1. Estimated Distributions of the First Sample From Exponential 
(1). The 40% uniform censoring times are denoted by the solid line; the 
second sample from the same situation is denoted by the dotted line. 

width used in estimating dQm, in (8). The kernel K must 
satisfy the particular conditions. The Gaussian kernel is a 
possible choice, and we use it here. Because the precise mean 
squared error of Qm, for censored case is not available, Padgett 
and Thombs (1986) used the bootstrap method to find an 
optimal bandwidth for Qm. It can be shown that the rates 
hm = O(m11I/3) and hm, = O(m-115) are the optimal rates 
for Qm, and dQm,. The optimal values of the bandwidths can 
also be found via the method of cross-validation. Note that 
we use dQm ' F to estimate dQ F= I/gG - Fand the 
optimal rate is O(m- m15), the same rate as that used to 
smooth a probability density function (pdf), like g (see Sil- 
verman 1986, eq. 3.2 1). Therefore, for simplicity we will use 
the bandwidth referenced to a standard distribution for the 
Gaussian kernel, as suggested by Silverman (1 986, eq. 3.3 1). 
The bandwidth is hm = .9Am-11/5, where A = min {standard 
deviation, interquartile range! 1 .34}. 

The models for generating the survival times and the cen- 
soring times were adapted from Akritas (1 986) and are listed 
in Table 1 for an easy comparison. In these examples we 
used sample sizes m = n = 30 and used a common (linear 
congruential) random number generator with multiplier 
equal to 16,807 and the modulus equal to 2G31 - 1. Different 
initial seeds, 2 and 3, were used to generate the first and 
second samples. The other initial seed, 1, was used to generate 
bootstrap resamplings of these two samples. The number of 
bootstrap resampling was set at 200. 

In Example 1, the two samples came from the same model; 
the survival times came from an exponential distribution 
with the scale parameter f = 1, and the censoring times 
came from a uniform [0, b] distribution with 40% censoring 
(i.e., b = 2.2316 for this case). The only difference in sample 
data was due to the different initial seeds, 2 versus 3. The 
resulting PL estimators are shown in Figure 1, corresponding 
to a solid line and a dotted line. It seems difficult to tell 

wheteFG badift wefecancjded toastnlydditibto from Fgr1.Athoug 
thessQ-Q plotehits thge40stragh lin Siemn several paes, it31 is 

sTilharmdel tor deierawhegther wurivlthoutan the conience 
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Figure 2. Estimated Q-Q plot of Example 1 (Solid Line) and 90% Boot- 
strap Confidence Band (Dotted Line). The estimated confidence band 
includes the 450 dashed line. 

band. If we choose a = .10 and use Theorem 2.2, we can 
plot the approximate confidence bands of the bootstrap 
Q-Q plots based on the PL estimators of this example, for 0 
< t < T, < Xnn, where the upper and lower bands are drawn 
as dotted lines. Though the lower bands shall be truncated 
at 0, we keep the original shape for easy viewing. It is clear 
from Figure 2 that the simultaneous confidence band con- 
tains the 450 straight line entirely. Hence we can conclude 
that F = G at approximately 90% confidence. 

In Example 2, the two samples came from two different 
survival time distributions but with 40% uniform censoring 
distributions. One was exponential (,B = 1) survival distri- 
bution with uniform [0, 2.2316] censoring distribution, and 
the other was exponential (/ = 2) survival distribution with 
uniform [0, 1. 1 158] censoring distribution. The resulting PL 
estimators are shown in Figure 3. Because the two plots in 

Icc 

co 

O0 

00 02 04 06 08 10 1 2 1'4 16 1'8 2 

t 

Fiur 3EsiaeDitiuinofteFrtSmlExoetl() 
Wih0 UnfrmCnoigTms(oiLieanthScndapl 

from Exoeta (2 ih4%UiomCnoigTms(otdLn) 

o - 

00 o 04 06 08 10 12 14 16 18 

t 

Figure 4. Estimated Q-Q Plot of Example 2 (Solid Line) and 90% Boot- 
strap Confidence Band (Dotted Line). The estimated confidence band 
does not include the 450 dashed line. 

Figure 3 do not hit each other, the figure shows that F = G# 
but the confidence level is unknown. The approximate con- 
fidence band of bootstrap Q-Q plot in Figure 4 does not 
contain the entire 450 straight line. Thus we can judge that 
F # G at approximate 90% confidence. 

In Example 3, the two samples came from the same sur- 
vival distributions with different censoring distributions. The 
first sample came from a 40% uniform censoring distribution 
(i.e., b = 2.2316 for the first sample), and the second sample 
came from a 20% uniform censoring distribution (i.e., b 
= 4.9651 for the second sample). The consequent PL esti- 
mators are sketched in Figure 5. Once again, we cannot infer 
whether F = G from Figure 5. The approximate confidence 
band of bootstrap Q-Q plots is exhibited in Figure 6. As the 
approximate simultaneous confidence bands contain the 450 
straight line entirely, we can determine that F = G at ap- 

c 

00 

C H 

N 0 0 4 0 a 1 2 1 6 2 0 2 4 28 3 2 38 

FigureS. Estimated Distributions of the First Sample From Exponential 
(1) With 40% Uniform Censoring Times (Soild Line) and the Second Sample 
From Exponential (1) With 20% Uniform Censoring Times (Dotted Line). 
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Figure 6. Estimated Q-Q Plot of Example 3 (Solid Line) and 90% Boot- 
strap Confidence Band (Dotted Line). The estimated confidence band 
includes the 450 dashed line. 

proximate 90% confidence. The nonparametric inference for 
the Q-Q plots for the figures are consistent with the true 
states of nature even in the presence of nuisance censoring 
distributions (HI and H2). These Monte Carlo studies con- 
firm the theoretical results of the previous section. 

As a real data example, we examine a study performed at 
the Mayo Clinic of patients with limited Stage II or Illa ovar- 
ian carcinoma. One main goal was to determine whether or 
not grade of disease was associated with time to progression 
of disease. The data were taken from a study by Fleming, 
O'Fallon, O'Brien, and Harrington (1980). For the patients 
with low-grade or well-differentiated cancer, there were five 
uncensored and nine censored data points; for the high-grade 
or undifferentiated cancer patients, there were fifteen un- 
censored and four censored data points. The estimated dis- 
tributions are plotted in Figure 7. The Q-Q plot and its as- 

co 

0 
? 

?0 200 400 600 800 1000 1200 1400 

time (days) 

Figure 7. Estimated Distributions of Progressed Proportion of Patients 
With Low-Grade (Solid Line) and High-Grade (Dotted Line) Ovarian Car- 
cinoma Using the Data of Fleming et al. (1980). 

CD 

7 0 200 400 600 800 1000 1200 

time (days) 

Figure 8. Estimated Q-Q Plot of Empiric Data From Fleming et al. (1980) 
(Solid Line) and 90% Bootstrap Confidence Band (Dotted Line). The es- 
timated confidence band does not include the 450 dashed line. 

sociated confidence band are shown in Figure 8. The 
estimated confidence band does not include the 450 dashed 
line; hence the distributions in Figure 7 are different. 

Monte Carlo simulation was conducted to examine the 
level and power of the Q-Q goodness-of-fit statistic. In 
Table 2 we present the level simulation. We consider the 
null hypothesis of equality of three distributions-the ex- 
ponential (1), Weibull (1, .5), and Wiebull (1, 1.5)-where 
the distribution function of the Wiebull (X, a) equals 1 
- exp [ - ( Xt) a]. We also vary the amount of censoring and 
the sample sizes. The sizes of the tests were estimated from 
2,500 simulation samples. The results indicated that the 
nominal level of the test is close to the actual level, even for 
small sample sizes and heavier censoring levels. This is no 
doubt due to the fact that we are using bootstrap levels rather 
than the asymptotic ones. 

Table 2. Simulated Level of the Q-Q Goodness-of-Fit Statistic 

Level of test 
Survival Censoring % 

distribution H1/H2 m n .01 .05 .1 

Exp(1) 40/40 15 10 .008 .046 .092 
20 15 .008 .048 .095 
25 20 .009 .051 .097 

40/20 15 10 .008 .047 .093 
20 15 .012 .049 .104 
25 20 .011 .051 .102 

Wiebull (1, .5) 40/40 15 10 .008 .045 .106 
20 15 .009 .047 .094 
25 20 .012 .051 .097 

40/20 15 10 .009 .046 .092 
20 15 .014 .053 .105 
25 20 .013 .051 .101 

Wiebull (1, 1.5) 40/40 15 10 .007 .046 .091 
20 15 .008 .053 .104 
25 20 .013 .052 .103 

40/20 15 10 .007 .046 .093 
20 15 .008 .052 .103 
25 20 .012 .052 .102 
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Table 3. Power Study: Simulated Powers of the Q-Q, Gehan, and Logrank Tests Under Crossing Hazard Alternatives 

Q-Q Gehan Logrank 

Survival distribution Censoring distributions m = n .01 .05 .01 .05 .05 .1 

EARLY U[0, 1] 20 .287 .562 .161 .416 .081 .177 
50 .723 .856 .463 .776 .125 .341 

U[0, 2] 20 .310 .551 .152 .336 .052 .162 
50 .792 .903 .371 .642 .068 .243 

MIDDLE U[0, 1] 20 .321 .612 .147 .394 .094 .205 
50 .784 .902 .302 .580 .231 .426 

U[0, 2] 20 .404 .613 .099 .311 .076 .184 
50 .799 .926 .297 .536 .142 .336 

LATE 1 U[0, 1] 20 .323 .534 .021 .049 .096 .215 
50 .764 .901 .025 .051 .236 .531 

U[0, 2] 20 .692 .924 .082 .176 .301 .590 
50 .991 .999 .098 .261 .849 .981 

LATE 2 U[0, 1] 20 .256 .346 .031 .108 .071 .246 
50 .376 .610 .056 .142 .221 .431 

U[0, 2] 20 .624 .791 .125 .294 .404 .643 
50 .982 .998 .274 .513 .821 .941 

In Table 3 we give power comparisons of the Q-Q 
goodness-of-fit statistic to Gehan's (1965) extension of the 
Mann-Whitney test and the logrank test (Mantel 1966). Ge- 
han's test and the logrank test are both known to perform 
poorly when the hazard rates of distributions under test cross. 
We simulate the power of these three statistics under several 
crossing hazard alternatives for variable sample sizes, levels, 
and censoring distributions. The design of this power study 
is quite similar to that of Fleming et al. (1980). The alter- 
natives under study are an early hazard difference (EARLY), 

XF = 3 XG = .75 t E (0, .2) 

XF = .75 XG = 3 t E [.2, 4) 

XF = I XG = I t E [.4, xo); 

a middle hazard difference (MIDDLE), 

XF= 2 XG = 2 t E (0, .l) 

XF = 3 XG = .75 t = [.l,1 .4) 

XF = .75 XG = 3 t E [.4, .7) 

XF= 1 XG = l tE [.7, oo); 

a late hazard difference (LATE 1), 

XF = I XG = I t E (0, .8) 

XF = 2 XG = .2 t E [.8, oo); 

and another later hazard difference where F and G are the 
Wiebull (2, 2) and Wiebull (.5, .5) (LATE 2). The numbers 
speak for themselves: The Q-Q goodness-of-fit statistic is 
much more powerful than the Gehan and logrank compet- 
itors. These comparisons look roughly similar to the ones 
given in table 5 of Fleming et al. (1980). 

4. CONCLUDING REMARKS 

We studied the nonparametric bootstrap inference for 
censored data in one- and two-sample cases. In addition, a 
variety of applications of the bootstrap to various shift func- 

tional statistics of censored data can be analogously derived 
via the similar techniques given in this article. The Lorenz 
curves method (Lorenz 1905) is a good example. This 
method has been generalized to measure the concentration 
and inequality in distributions in many fields, such as eco- 
nomics, politics, and many other social sciences (Csorgo, 
Csorgo, and Horv'ath 1986). It also has known asymptotic 
convergence properties and is adapted to the censored case 
as well as to the bootstrap resampling. Cumulative hazard 
functions are another possible class of examples (see Da- 
browska, Doksum, and Song 1989). One can study these 
functionals using the techniques developed previously. 

APPENDIX: BOOTSTRAPPING FUNCTIONALS OF THE 
PL ESTIMATOR AND PROOFS 

In this section we give a self-contained development of the nec- 
essary weak convergence results for bootstrap problem in the pres- 
ence of randomly right-censored data. The results given here are 
more general than what are needed; however, the general results 
are no more difficult than the specific results. 

Henceforth we consider the space of D[0, oo), the space of cadlag 
real-valued functions on infinite time scales [0, oo). These functions 
can have finite jump discontinuities, such as the edf's or the eqf's. 
Any stochastic process having all sample paths in D[0, oo) can be 
regarded as a random element in D[O, oo). We will use the supre- 
mum norm over all compact finite subintervals, [0, T], to construct 
a normed vector space B = { D[0, oo), j| * || }, where || xll = SUpt;T 
lx(t)l, for any x E D[O, oo) and 0 < T < oo. (One can find a 
further discussion of this norm or the other metrics in Gill 1989, 
p. 99, Pollard 1984, p. 108, and Shorack and Wellner 1986, p. 26.) 

We also use the compact (or Hadamard) differentiability. Assume 
that 4: B1 -- B2, where B1 and B2 are normed vector spaces and 0 
is compactly differentiable at x. That is, 

[O(xn + tnhn) - (q(Xn)]/ltn - dq$(x)h 
as tn 0 in R = (-oo, oo), xn -11.11x and hn 1 h in all compact 
subsets of Bl. 

To prove the bootstrap version of a known empirical process 
result, we start with the following fundamental result, the Skorohod- 
Dudley-Wichura almost sure representation theorem (see Shorack 
and Wellner 1986, p. 47). 
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Lemma A.l. If Xn, d X and X takes values in a separable 
subset of a normed vector space B with a a-algebra F8, then there 
exists a sequence of X' with Xn =d Xn, for all n, and X' =d X such 
that Xn a.s. X'- 

Thus, once we have the weak convergence of a stochastic process, 
we can construct another distributionally equivalent sequence of 
random elements that have the a.s. property, provided the conditions 
of the theorem are satisfied. Using this stronger property, we can 
investigate the functionals of Xn (or Xn) in any general space. Because 
the conditions of the Skorohod-Dudley-Wichura almost sure rep- 
resentation theorem hold for our problem settings, we can use this 
theorem to avoid such defects. Gill (1989) demonstrated various 
applications of this method and also proved the weak consistency 
of the bootstrap functionals for the complete data problem. We 
will restate theorem 5 of Gill (1989) as follows. 

Lemma A.2. Assume that (a) Fn is the edf, F* is the bootstrap 
edf, and Wn[Fn(t) - F(t)] B? F; and (b) k: B1 -- B2 are 
compactly differentiable at F, ': B2 -- R, and i are measurable 
and continuous in a subset of B2, where dif(F)B? B F lies in 
B2 with probability 1. Then L*(if{V/[Ob(F* ) - O(Fn)]}) 

p L(4'{dq(F)B" o F}) as n - oo, where L(*) denotes "the 
distribution of " and L*( * ) denotes the "bootstrap distribution of." 
Furthermore, if iP{dg(F)B0 o F} has a continuous distribution, 
then 

sup I P*( ,6{ V4 [ (F* )-(Fn)]} ? t) 

-P(i1 {dq(F)B F F} < t)| p0 as n - oo, 

where P( - ) denotes "the probability of" under L and P* denotes 
the "probability of" under L*. 

Assumption (a) in Lemma A.2 is a consequence of Donsker's 
theorem (Pollard 1984, thm. V 11). The result of this lemma reduces 
to the convergence of Fn* if both i and Vf are the identity functions. 
Most of all, the method of proof in the lemma is very illuminating. 
For our specific example, we will apply it to prove the weak con- 
vergence of the bootstrap Q-Q plots for censored data in the two- 
sample case. The following lemmas are from Gill (1980) and Akritas 
(1986). 

Lemma A.3. Let T, be a finite constant such that [1-F( T1 )] 
[ -HI ( T, )] > 0. Then nH[Fn(t) - F(t)] => Z, (t) on D[O, T, ] 
as n -- oo, where Z, is a mean 0 Gaussian process with covariance 
function 

C (s, t) I- [1F(s)][l- F(t)] 
d l_ F(u)][-()' f [I - dF(u)2[-H u) 

for s, t E [0,T1. 

Lemma A.4. Let T, be defined as in Lemma A.3 and let F* 
denote the bootstrap estimator of FJn. Then V [F* (t) - Fn(t)] 
= Z* (t) on D[O, T,] as n -s oo, where Z* is a mean 0 Gauss- 
ian process with covariance function C, (s, t) = C,(s, t), for s, t 
E [0, T1]. 

We can draw the parallels between Lemmas A.3 and A.4 by 
noting that each process has the same limiting Gaussian process. 
Using Lemmas A.3 and A.4, we can generalize the convergence 
theorem for the uncensored case in Lemma A.2 to the censored 
case. 

Theorem A.5. Under the assumptions on X and f as in Lemma 
A.2, 

{{ 
[?F*)?vi")J )1J/ d(F), Of 

OF}as nl-oo. 

Proof By Lemma A.3 and the Skorohod-Dudley-Wichura al- 
most sure representation theorem in Lemma A. 1, it is possible to 
construct Fn =d Fn and Z' =d ZI such that r[ n- F] .. Z' a.s. 
Let F'* be the bootstrap estimator of FP; then by Lemma A.4, 

F- Fn] ZI [1 - Fn] =d Z, [1 - FnI. Again, by Lemma 
A.l, it is possible to construct Fn' =d Fn* and Z1' =d Z * such 
that -Fn] Z,*'[l - Fn] =d Z*[1 - FJ] a.s. Hence 

4 [Fn *= [ F F] V [ + V [FnF- F] -- Z*'[l -Fn] 
+ Z' a.s. Hence 1I[(O(F'*') - 4(Fn)] = F -+(F)] 
-V[,O(Fn)-,O(F)] -- dq(F) {[Z,*' o - F] [1 -Fn] + Z' q F} 
- do(F)[Z,*' o F] [1 - Fn] a.s. By the continuity of iV, 

Vn 4, d{ 4)(Fn)]}_ (tk{dk(F) [Z' ? F] [ 1-F } a.s. 
Because Fn*' d Fn* Zl' d Zl*,and Z,[ -Fn] dZl,it follows 
that 4{VHb[t(Fn*) )- /(Fn)] } d i/{ dk(F)Zi F} . Finally, 
because the left side is a measurable function of Fn =d Fn, this 
completes the proof. 

This theorem gives the necessary results to deduce the large- 
sample bootstrap distribution theory for a wide class of func- 
tionals of the PL estimator. These examples include L, M, and 
R estimators as well as a variety of functionals discussed by Gill 
(1989). 

We now specialize these general results to the problem at hand- 
the weak convergence of the bootstrapped shift process with cen- 
sored data. Theorem A.5 deals with Fn in the first sample. Because 
the two samples are totally symmetric, we can have a similar theo- 
rem for Gm in the second sample. 

Corollary A.6. Let T2 be a finite constant such that (1 
- G(T2))(I - H2(T2)) > 0. Under the assumptions on / and i 
as in Lemma A.2, 

as in Lemma A.2as -.oo 
4{ Vm[,O(G* )-(d.)] } P{d(k(G)Z2 ? O ? G}I as m oo, 

where Z2 is a mean 0 Gaussian process with covariance function, 

fst 
l dG(u) 

C2(s, t) [1 - G(s)][l - G(t)] Jo [1 - G(U)]2[l 1H2(u)] 

for s, tE [O, T2J. 

Proof. After the proper identification in the proof of Theorem 
A.5-F - G, n 4-* m, HI H2, Z, Z2-the proof follows. 

Choosing the functional 4(* ) = ( * )-',the inverse function, we 
have the following results. 

Corollary A.7. Assume that g(G- (-)) is continuous and 
bounded away from 0 on [0, T2 ], where g is the pdf corresponding 
to G. Let Gj-' denote the bootstrap estimator of G,2. Then 

FM [dG*m- (t) - Gm (t) ] == 

Z2(G '(t))/g(G '(t)) on D[O, T2] as m oo. 

Proof Let 4( .) = ( * )-', the inverse function, and /( * ) =- ), 
the identity function. Because do(G) = 1 /g - G', the theorem 
follows directly from Corollary A.6. 

Putting all of the foregoing results together yields the main re- 
sult on the weak convergence of the bootstrapped shift process 
with censored data. The statement of the theorem is given in Theo- 
rem 2.1. 

Proof of Theorem 2.1 

First, we recall the following result of theorem 3.2 of Wells and 
Tiwari (1989a): Suppose that the assumptions in Lemma A.3 and 
Corollary A.7 hold. If n/N --0 E (0, 1), then mn/N[Anmn(t) 
- A(t)] = Vmn/N[Gml Fn(t) - G' F(t)J -- Z(t)/g G- 
OF(t) on D[0, T], as m An -so, whereN =m + nand Zis a 
mean 0 Gaussian process with covariance kernel given by C( s, t) 
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= (1 - O)CI(s, t) + 0C2(G' F(s), G' F(t)) for s, t E [0, T ]. 
Thus Z = 1 -0Z1 + V0Z2 G -I - F. Now for the bootstrap ana- 
log, we need to study the process, 1m/N[G-' - Fn] 
This is equal to 

\ / mn [G*-' F F*] 
N 

+ [Gl oFn*-GloFn] 

= AN + BN, say, 
where 

AN 3 [G*'F*GlF* 

- \/N Z2 ? G l] Fn* /g o G' F", by Corollary A.7 
N 

VfZ2 G` Flg - G- F, 
by (17.7)-(17.9) of Billingsley (1968). 

In addition, 

BN N[G-l F*G mlFn 

= V N [F*nFIn{ [Gl - Fn*-G dm - Fnl /[Fn*-Fn} 

m 
> NZI 1[6ml oFn* -Gm o Fn II[ Jn* - Jnl } N 

= 1I gOZ/g-IG n* 
This follows from theorem 3.2 of Wells and Tiwari (1989a) and 
the mean value theorem, where 1Fn**(t) - Fn(t)j < 1 F*(t) 
- Fn(t) J. Hence, by (17.7)-(17.9) of Billingsley (1968), it follows 
that BN= 1- 0 Z I/g ? G-' - F. Finally, we can use the a.s. rep- 
resentation theorem in Lemma A. 1 or the method in the proof of 
theorem 3.2 of Wells and Tiwari (1 989a) to conclude that AN + BN 

=> Zlgo- G`-' F. 

Proof of Theorem 2.2 

From theorem 3.2 of Wells and Tiwari (1 989a), Theorem 2.1, 
and consistency of Qm, it follows that 

h[lmn(t) - A(t)I/[dQm - Fn(t)] I Z(t) 

and 

[A\mn(t) - Amn(t)I/[dQm -F (t)] = Z(t). 

Because sup, j* is a continuous mapping in the Skorohod topology, 
invoking the continuous mapping theorem yields 

SUp,N mn (t) m ] / I dQm - Fn(t)] -d SUpI I Z(t) I 

and 

sup1 N [dUmnPt/\( A I[dQm - fn(t) d SUPI I Z(t) . 

Hence Cmn( A) converges to the (1 -o)th point of the distribution 
of sup, I Z( t) 1. Similarly, 

l~ ~ ~ ~ ~ ~ ~~~~~ 

Thus 

Pr sup( , [N mn(t) -A(t)l/[dQm Fn(t)] ) < Cn(A)} 

= Pr{ yj [Amn(t)- A(t)I/[dQm -F(t)]| < Cmn(A), 

N Vl t E [O, Tl ]| 

= Pr [mn ( t) - Cmn(A)[dQm - Fn(t)] < A(t) mn 

< Amn (t) + Cmn(A)[dQm - Fn) 
mn 

V t E [0, T]} 1- a. 

[Received August 1992. Revised September 1993.] 
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