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Two new noise-reduction algorithms, namely, the adaptive symmetric mean filter �ASMF� and the hybrid
filter, are presented in this paper. The idea of the ASMF is to find the largest symmetric region on a
slope facet by incorporation of the gradient similarity criterion and the symmetry constraint into region
growing. The gradient similarity criterion allows more pixels to be included for a statistically better
estimation, whereas the symmetry constraint promises an unbiased estimate if the noise is completely
removed. The hybrid filter combines the advantages of the ASMF, the double-window modified-trimmed
mean filter, and the adaptive mean filter to optimize noise reduction on the step and the ramp edges.
The experimental results have shown the ASMF and the hybrid filter are superior to three conventional
filters for the synthetic and the natural images in terms of the root-mean-squared error, the root-mean-
squared difference of gradient, and the visual presentation. © 2001 Optical Society of America
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1. Introduction

Noise reduction is a process to remove the noise from
a corrupted image and preferably keep the structures
of the original image simultaneously. Because the
noise not only degrades the visual resolution but also
impedes the quantitative analysis of an image, noise
reduction has been considered an essential task for
many image-processing applications. To eliminate
the noise while preserving the image structures, an
enormous number of noise-reduction algorithms,
ranging from simple averaging to regularization ap-
proaches, have been proposed in the past.

A noise-reduction algorithm usually comprises
three essences, namely, image model, denoising win-
dow, and denoising strategy. The image model
characterizes the intensity variation of adjacent pix-
els, which serves as the basis of the design of a noise-
reduction algorithm. Some widely used models are
the flat facet model,1 the slope facet model,1 and the

piecewise polynomial model.2 For each pixel to be
denoised, called a target pixel, the denoising window
defines the region from which the neighborhood in-
formation is utilized by the denoising strategy. For
convenience, the pixels in the denoising window, ex-
cluding the target pixel, are called window pixels.
The shape of the denoising window may be regular or
irregular. The shape and the size of the denoising
window may be fixed for all target pixels or may be
changed adaptively subject to specific criteria. Note
that the denoising window is not necessarily a con-
tinuous region. It may be constituted by a set of
pixels sporadically distributed in the vicinity of the
target pixel. As the core of a noise-reduction algo-
rithm, the denoising strategy attempts to attain an
estimate, which is as close to the original �uncorrupt-
ed� image as possible, using the information provided
in every denoising window. Four typical types of
denoising strategies are the order statistic filters,3
the weighted mean filters,4 the regression filters,2
and the regularization filters.5,6

Most early noise-reduction algorithms were implic-
itly or explicitly designed on the basis of the flat facet
model. The flat facet model assumes that the orig-
inal image is composed of horizontal planes, and ad-
jacent planes are connected by the step edges. To
preserve the step edges, two types of denoising strat-
egies have been employed by these noise-reduction
algorithms. In a denoising window the first type of
denoising strategies tends to give a larger weight to a
pixel that is less likely to be an edge point during
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integration of the neighborhood information, e.g.,
computation of the weighted sum of the gray levels of
all pixels in the window. One example is the gradi-
ent inverse weighted smoothing scheme proposed by
Wang and Vagucci,7 in which the gray level of each
target pixel is replaced by the weighted sum of the
gray levels of all pixels in the corresponding denois-
ing window. The denoising window is a 3 � 3 pixel
window centered at each target pixel. The weight of
each window pixel is inversely proportional to the
magnitude of the gradient at that pixel. Another
example is the filter proposed by Lee,8 in which the
gray level of the target pixel is substituted by the
weighted sum of the gray level of the target pixel and
the mean of the gray levels of the window pixels. A
larger weight is assigned to a target pixel with a
larger variance, which may be estimated from the
neighboring pixels of the target pixel. The denoising
window is a square window of a fixed size.

In the second type of denoising strategies the de-
noising window contains only those window pixels
that are approximately on the same horizontal plane
as the corresponding target pixel or the selected ref-
erence pixel. For instance, the adaptive mean filter4

�AMF� selects the window pixels in such a way that
the differences between the window pixels and the
target pixel must be less than a specified threshold.
The double-window modified-trimmed mean �DW-
MTM� filter9,10 chooses the window pixels with the
constraint that the differences between the window
pixels in the large window and the median of the
small window, which is centered at the target pixel,
are limited to a prescribed range. The adaptive
neighborhood noise subtraction �ANNS� filter11 not
only requires the window pixels to be roughly on the
same horizontal plane as the target pixel but also
adopts Lee’s approach8 to estimate the gray level of
the target pixel.

Although the noise-reduction algorithms based on
the flat facet model may have fast denoising strate-
gies, they share an inherent weakness, which is that
the assumed step edges are rarely found in natural
images. Because of the system point-spread func-
tion embedded in an imaging system, in reality, most
natural image edges generally appear as linear or
nonlinear ramp edges with various inclinations. As
a consequence, these noise-reduction algorithms tend
to distort the structures that are not linear or the
areas at which the local extrema occur. Further-
more, both types of denoising strategies are expected
to be ineffective for noises on the ramp edges because
of the large variances in the denoising windows and
the small areas of the attainable horizontal planes,
both resulting from the ramp structures.

To ameliorate the deficiency of the flat facet model,
many alternative image models have been employed
previously to describe natural image edges. Follow-
ing Acton and Bovik,5 most of them may be catego-
rized into two classes, i.e., the piecewise image
models �PIMs� and the local image models �LIMs�.
The PIM models images as obeying an image prop-
erty such as constancy, linearity, or some other more

complex property over the entire image in a piecewise
manner. Note that the flat facet model is a PIM of
zero order. For differentiation, PIMs other than the
flat facet model are called the high-order PIMs. The
LIM models images as obeying an image property
such as monotonicity, convexity–concavity, or some
other desired property for every denoising window
within the image. To satisfy the constraints of the
specified image properties, the noise-reduction algo-
rithms based on these image models generally adopt
such computation-intensive denoising strategies as
linear–nonlinear regression, regularization, and so
on. As a result, these noise-reduction algorithms
are usually time-consuming and may not be practical
for real-time applications, even though the high-
order PIMs and the LIMs may approximate the nat-
ural image edges more closely than the flat facet
model.

Another problem that the high-order PIMs and the
LIMs may have is the difficulty in determining the
proper shape and size of the denoising window. For
those noise-reduction algorithms based on the PIMs
and the LIMs, to fit the desired image models, the
denoising strategies, e.g., the regularization tech-
niques, usually incorporate denoising windows with
regular shapes, e.g., a square window. Statistically,
a denoising strategy prefers a large denoising win-
dow to a small one because using more neighborhood
information is more likely to attain a better estima-
tion, provided that the pixels in the window fulfill the
desired image model. However, denoising with a
large regular-shape window is apt to distort the im-
age structures because a regular-shape window may
inevitably contain pixels belonging to different
pieces, especially when the window is large. Even
though a better window size may be found by testing
multiple window sizes and choosing the best one,12,13

the induced higher computational cost is usually un-
desirable. Besides, the fixed window shape would
intrinsically hinder the noise-reduction algorithms
from maximizing the number of pixels included in
each denoising window.

Ideally, the denoising window for each target pixel
should include as many neighboring pixels that share
the specified image property with the target pixel as
possible. The shape and the size of the ideal denois-
ing window would naturally vary with the target
pixel. Several techniques9,11,14,15 have been pro-
posed to adaptively determine the set of pixels for
each denoising window, whereas they were designed
for the flat facet model and cannot be used for the
high-order PIMs and the LIMs, which are usually
preferred to approximate the natural image edges
more closely.

To optimize utilization of the neighborhood infor-
mation while using a image model more realistic than
the flat facet model, in this paper we propose two new
noise-reduction algorithms for removing noises with
a constant mean over the entire image. The first one
is a new adaptive noise-reduction algorithm, called
the adaptive symmetric mean filter �ASMF�, which
features the slope facet model, the adaptive denoising
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window, and the fast noniterative denoising strategy.
The slope facet model, though not the optimal model,
is a reasonable choice, considering the implementa-
tion complexity and the closeness of the model to the
natural image edges. On the basis of the slope facet
model, we have developed a new symmetric region-
growing scheme to adaptively find the denoising win-
dow in which the simple mean filter is employed to
remove the noises.

Whereas the first algorithm is designed to model
the ramp edges, the second one is to account for the
wide spectrum of the slope of the natural ramp edges.
The second algorithm is a hybrid algorithm combin-
ing the advantages of the proposed ASMF and two
conventional algorithms, namely, the DWMTM9,10

filter and the AMF.4 The idea is to use the ASMF for
a slowly varying ramp edge and the conventional
algorithms for a steep ramp edge. The rationale be-
hind the hybrid algorithm is that when the ramp edge
is steep, the limited number of pixels contained in the
denoising window may result in a poor statistic prop-
erty, and in this case it would be more appropriate to
perform denoising based on the flat facet model.
However, according to the study of Fong et al.,14 the
DWMTM filter and the AMF have a great edge-
preserving capability in removing noises around the
step edges. Moreover, the AMF is better in preserv-
ing the lines and the corners, whereas the DWMTM
filter is superior when the signal-to-noise ratio is low
around the target pixel.

The proposed algorithms will be compared with
three conventional noise reduction algorithms,
namely, the DWMTM filter, the AMF, and the ANNS
filter. Two types of images are used, i.e., the syn-
thetic and the natural images. The synthetic im-
ages are blurred with Gaussian filters of different
standard deviations to simulate the ramp edges.
The noises are additive white Gaussian noises of var-
ious standard deviations with a zero mean.

This paper is organized as follows. Section 2 de-
scribes the two proposed algorithms, the ASMF and
the hybrid filter, as well three conventional algo-
rithms, the DWMTM filter, the AMF, and the ANNS
filter. Section 3 presents the experimental results
and discussions. The conclusions are given in Sec-
tion 4.

2. The Noise-Reduction Algorithms

Five noise-reduction algorithms, the DWMTM filter,
the AMF, the ANNS filter, the ASMF, and the hybrid
filter, are described in this section. The first three
are the conventional algorithms to be compared with
the proposed ASMF and hybrid algorithms. The
DWMTM filter, the AMF, and the ANNS filter are
selected to represent three commonly used ap-
proaches to determining the adaptive denoising win-
dow for each target pixel. The DWMTM filter and
the AMF, which have been shown to have strong
ability in removing Gaussian noises,14 are typical ex-
amples of using thresholding techniques to choose
the window pixels within a predefined size of window.
The difference between these two filters is the DW-

MTM filter uses a smaller window to estimate the
reference for thresholding and the AMF uses the tar-
get pixel as the reference. The ANNS filter stands
for the class of algorithms employing the region-
growing scheme to find a connected set of pixels with
similar gray levels. Besides, all these three filters
share a common characteristic, which is that the de-
noising strategies are noniterative. The reasons
why the iterative denoising strategies are not consid-
ered in the comparative study are twofold. One rea-
son is that it is not fair to compare the performance
between iterative and noniterative denoising strate-
gies. The other reason is that the iterative denois-
ing strategy usually requires a long processing time,
which is not desirable for many real-time applica-
tions.

A set of pixels are defined as intensity irrelevant if
this set is formed without imposing any constraint on
the pixel intensities. Otherwise, these pixels are re-
ferred to as intensity relevant. For succinctness of
presentation, the notations defined below will be used
throughout this paper.

Wk: the set of pixels in the denoising window of
a target pixel pk;

S�pi�: the signal portion of the gray level of the
pixel pi;

N�pi�: the noise portion of the gray level of the
pixel pi;

I�pi�: the gray level of the pixel pi, which is equal
to S�pi� � N�pi�;

S�Wk�: the set of S�pi�’s of all pixels in Wk, i.e.,
�S�pi��@pi � Wk�;

N�Wk�: the set of N�pi�’s of all pixels in Wk, i.e.,
�N�pi��@pi � Wk�;

I�Wk�: the set of gray levels of all pixels in Wk, i.e.,
�I�pi��@pi � Wk�;

εk: the estimation error for a target pixel pk,
i.e., the difference between S�pk� and the
output of a filter for pk;

E�X�: the mean of X;
V�X�: the variance of X.

It is assumed in this paper that the noise is addi-
tive, uncorrelated with the image, and that the
means of the noises at all pixels in the image are
the same, i.e., E�N�pk�� 	 
, @pk. Furthermore, the
noise is assumed to be ergodic, i.e., E�N�Wk�� 	
E�N�pk�� 	 
, provided that the pixels in Wk are
intensity irrelevant. Without loss of generality, 
 is
set to 0 in the following discussions. Note that the
ergodic property is valid only for the set of pixels that
are intensity irrelevant because the constraints im-
posed on the pixel intensities might bias the mean of
the gray levels of the pixels in the set.

A. Double-Window Modified-Trimmed Mean Filter

The DWMTM filter has great ability in noise reduc-
tion and edge preserving but poor ability in line pres-
ervation.14 For each target pixel, pk, the DWMTM
filter defines the noise-reduction operation by use of
two windows, DSWk and DLWk, centered at pk, where
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the size of DSWk is smaller than that of DLWk. Let
mk stand for the median of the pixel gray levels in
DSWk. Then the denoising window of pk is defined
by

Wk � � pi�I� pi� � mk� � Tdwmtm, � pi � DLWk�, (1)

where Tdwmtm is a predetermined threshold. This
criterion has implicitly assumed the flat facet model
for the DWMTM filter. It is clear that the denoising
window of the DWMTM filter is not necessary a
single-connected component. Finally, the output of
the DWMTM filter for pk is defined as the mean of the
pixel gray levels in Wk, i.e., E�I�Wk��.

B. Adaptive Mean Filter

Compared with the DWMTM filter, the AMF is much
better in line preserving and slightly worse in noise
reduction.14 Both have good performance in edge
preserving.14 In contrast to the DWMTM filter that
uses double windows, the AMF employs only one win-
dow, AWk, to define the noise-reduction operation.
For each target pixel, pk, the denoising window is
defined by

Wk � � pi�I� pi� � I� pk�� � Tamf, � pi � AWk�. (2)

Then the output of the AMF for pk is defined as the
mean of the pixel gray levels in Wk, i.e., E�I�Wk��.
Like the DWMTM filter, the flat facet model has been
implicitly assumed and the denoising window of the
AMF is not necessary a single-connected component.

C. Adaptive-Neighborhood Noise Subtraction Filter

Unlike the DWMTM filter and the AMF, the ANNS
filter11 takes advantage of the region-growing tech-
nique to derive a connected denoising window for
each target pixel, pk. Using each target pixel, pk, as
the seed, the denoising window for pk will include
every pixel pi that is eight-connected to the seed and
satisfies �I�pk� � I�pi�� � Tanns. The total number of
pixels in a denoising window is limited to a pre-
defined number, Qanns

2. Then the estimate of S�pk�
is

yk � E�I�Wk�� � �1 � � n
2

d�
2 � n

2�1�2�
� �I� pk� � E�I�Wk���, (3)

where n
2 is the variance of the noises, which is as-

sumed to be known and d�
2 is the estimate of

V�S�Wk��, which is defined as V�I�Wk�� � n
2.

Two kinds of denoising windows were considered
by Paranjape et al.11 The ANNS filter first uses a
Qanns � Qanns square window, which is centered at
each target pixel, pk, to estimate d�

2. If d�
2 � n

2,
the square window is used as the denoising window
in Eq. �3� to estimate S�pk�. Otherwise, a new de-
noising window is found by region growing with a
threshold Tanns 	 2d� for Eq. �3�. The new d�

2

associated with the new denoising window is calcu-
lated as

d�
2 � �V�I�Wk�� � n

2 for V�I�Wk�� � n
2

0 for V�I�Wk�� � n
2 .

D. Proposed Adaptive Symmetric Mean Filter

By gathering the pixels with the similar gray levels
to the reference pixel, the DWMTM filter, the AMF,
and the ANNS filter have inherently assumed the
flat facet model for the image. Despite of their
outstanding performances on the flat areas, these
three filters suffer at least two potential problems
on the ramp structures, which are monotonically
increasing or decreasing. Consider an idea ramp
structure, which is defined as a set of connected
pixels with the same normal vector everywhere on
the surface formed by the intensities of these pixels.
As an example, the side view of an ideal ramp struc-
ture is shown in Fig. 1�a�. For a target pixel on the
ramp structure, its typical denoising window de-
rived by the DWMTM filter or the AMF is illus-
trated in Fig. 1�b�, and that derived by the ANNS
filter is given in Fig. 1�c�.

Because the threshold used in these three filters
should be kept reasonably small to avoid smearing
out the nonflat structures, one potential problem of
these three filters is the limited number of window
pixels that could be included in a denoising window
on a ramp structure. It suggests that the outputs
of the filters may be statistically unreliable. The
other problem arises from the fact that E�S�Wk��
does not guarantee to be equal to S�pk� because of
the potentially asymmetric spatial distribution of
the window pixels found by these three filters as
illustrated in Figs. 1�b� and 1�c�. It means that

Fig. 1. �a� Side view of an ideal ramp edge. �b� The front view of
the denoising window, derived with the DWMTM filter or the
AMF, for a target pixel on the ideal ramp edge. �c� The front view
of the denoising window, derived with the ANNS filter, for a target
pixel on the ideal ramp edge.
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these three filters do not promise a correct estimate
for an ideal ramp structure even if the denoising
window is noise free and contains a sufficient num-
ber of window pixels.

To amend these two problems inherent in the DW-
MTM filter, the AMF, and the ANNS filter, a new
noise-reduction algorithm based on the slope facet
model, called the ASMF, is proposed in this paper.
The goal of the proposed ASMF is to find as many
pixels as possible for a denoising window not only on
a flat area but also on a ramp area and to ensure the
correctness of the estimate within a reasonable com-
putation time. To achieve this goal, the proposed
ASMF models the image as a composition of nonover-
lapped slope facets, each of which may be considered
an ideal ramp. For each target pixel pk, the ASMF
attempts to find the largest symmetric denoising win-
dow Wk by use of the region-growing technique such
that all pixels in the denoising window are on the
same slope facet. The size of Wk is bounded by the
maximum region size Lasmf � Lasmf. By symmetry,
we mean that for every window pixel pi in the denois-
ing window, there exists another window pixel pj
such that pi and pj are symmetric with respect to pk.
As an example, a symmetric denoising window is
illustrated in Fig. 2, in which the central square is the
target pixel of the denoising window and the other
two squares represent a pair of pixels symmetric with
respect to the target pixel.

To ensure that all pixels in the denoising window
are on the same slope facet, we propose that the
gradient similarity serve as the criterion for region
growing, instead of the common criterion, the inten-
sity similarity, employed by many other region-
growing-based approaches such as the ANNS filter.
The gradient threshold used in the region growing is
denoted as Tasmf. To reduce the estimation error of
the gradient possibly introduced by the noise, the
regional gradient derived with the horizontal and
vertical Kirsch templates16 is used in this study in-
stead of the widely-used local gradient computed
from the eight nearest neighbors of each pixel. The

horizontal Kirsch template of size Wkirsch � Wkirsch is
defined as

���1�Wkirsch���Wkirsch�1��2� �0�Wkirsch�1 �1�Wkirsch���Wkirsch�1��2��,

where �a�m�n represents an m � n matrix with all
elements equal to a. The vertical Kirsch template is
the transpose of the horizontal Kirsch template of the
same size. Because the gradient estimation, though
important, is not the focus of this paper, the Kirsch
templates have been chosen only for their simplicity
and variety of window sizes. One may use any other
gradient estimator to derive a better estimation of the
gradient for each pixel.

Once the symmetric denoising window Wk is found
for a target pixel pk, the output of the ASMF is de-
fined as the mean of the pixel gray levels in Wk, i.e.,
E�I�Wk��. It is expected that the proposed ASMF
will make a correct estimation for any target pixel pk
on the ideal ramp structure and on the flat area be-
cause for both types of structures,

E�I�Wk�� � E�S�Wk�� � E�N�Wk��

� E�S�Wk��

� S� pk�. (4)

From line one to line two of Eq. �4�, E�N�Wk�� is set to
0 on the basis of the ergodic property. In lines two
and three E�S�Wk�� 	 S�pk� is ensured by the sym-
metry property of the denoising window Wk.

In comparison with the DWMTM filter, the AMF,
and the ANNS filter, the proposed ASMF is expected
to have a better performance than these three filters
on the ramp structure with a gentle slope; the ASMF
not only finds more pixels in the denoising window by
use of the gradient similarity but also makes certain
that every window pixel can be paired up with an-
other window pixel, both of which are symmetric with
respect to the target pixel. The former gives a sta-
tistically more plausible result, whereas the latter
ensures E�S�Wk�� 	 S�pk�. Nevertheless, when the
ramp structure has a steep slope, the estimation de-
rived by the ASMF becomes less reliable owing to the
limited number of pixels that can be found on a steep
ramp. One exception is if the steep ramp edge is
relatively long, then for any target pixel on the ramp,
the ASMF might be able to find a long strip of de-
noising window in parallel with the steep ramp edge.

The proposed ASMF is also expected to outperform
the DWMTM filter, the AMF, and the ANNS filter on
the flat areas. According to Eq. �4�, the estimation
error caused by the proposed ASMF would be

εk � E�I�Wk�� � S� pk�

� 0. (5)

Nevertheless, for both the DWMTM filter and the
AMF, the estimation error for a target pixel pk on a
flat area is given by

εk � E�I�Wk�� � S� pk�

� E�N�Wk��, (6)

Fig. 2. Symmetric denoising window derived with the ASMF, in
which the central square is the target pixel of the denoising win-
dow and the other two squares represent a pair of pixels symmetric
with respect to the target pixel.
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with E�S�Wk�� 	 S�pk� for a flat area. Because the
pixels in Wk are intensity relevant, the ergodic prop-
erty no longer holds for Wk, which means that
E�N�Wk�� would not be 0 in general. Although it is
hard to determine the estimation errors without
knowing the probability density function of the noise,
it can be shown that the estimation errors are
bounded subject to the intensity constraints. More
specifically, for the DWMTM filter

�Tdwmtm � �k � εk � Tdwmtm � �k, (7)

where �k 	 mk � S�pk�, and for the AMF

�Tamf � N� pk� � εk � Tamf � N� pk�. (8)

For the ANNS filter, because d�
2 is expected to be

small for a flat facet, the Qanns � Qanns square win-
dow would most probably be used as the denoising
window. In this case, because all pixels in the win-
dow are intensity irrelevant, the ergodic property
may be applied, i.e., E�N�Wk�� 	 0, which leads to

εk � �1 � � n
2

d�
2 � n

2�1�2�N� pk�. (9)

If d�
2 �� n

2, by use of the Taylor expansion, εk may
be further reduced to

εk � �1 � � 1
1 � �d�

2�n
2��

1�2	N� pk� 

d�

2

2n
2 N� pk�.

(10)

E. Hybrid Filter

By use of the gradient similarity criterion and impos-
ing the symmetry constraint in the region growing, it
is expected that the proposed ASMF will make a
correct estimate for a ramp structure with a gentle
slope and for a flat area. However, owing to the
limited number of pixels that could be found for the
denoising window, the ASMF shows an inferior per-
formance on a steplike edge �i.e., an extremely steep
ramp edge�. To remedy this problem, the DWMTM
filter and the AMF are proposed to be in collaboration
with the ASMF. On the basis of the evaluation of
Fong et al.,14 the DWMTM filter has very strong abil-
ity in noise reduction and very good edge preserva-
tion capability with the implicit assumption of the
flat facet model. However, the DWMTM filter is not
good in preserving the lines and the corners in an
image, inheriting the drawback of the median filter
used to determine the reference of the thresholding.
In contrast, the AMF has been considered to be very
good in line and edge preservation and has strong
ability in noise reduction.14 It is also expected to be
capable of preserving the corners by gathering those
pixels with the similar gray levels to the target pixel
for the mean computation.

The hybrid filter was devised to apply the ASMF to
the flat areas and the ramp structures with gentle
slopes, and the DWMTM filter and the AMF to the
steplike edges. Because the performance of the
AMF is comparable with or better than that of the
DWMTM filter in edge, line, and corner preservation,
the AMF would be a reasonable choice for the most
cases of the steplike edges. When the target pixel is
corrupted by the noise to a great extent, the DWMTM
filter is adopted in place of the AMF. The reason is,

Fig. 3. Uncorrupted synthetic images with �a� b 	 0 and �b�
b 	 2.

Fig. 4. Original natural images �a� Lenna, �b� Cameraman, and �c� Peppers.
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in this case, the AMF would likely result in an erro-
neous estimate and find a bad reference for the
thresholding. In contrast to the AMF, the DWMTM
filter uses the median filter to attain a better refer-
ence for the thresholding. That is probably why the
DWMTM filter is slightly better than the AMF in the
capability of noise reduction.14

To realize this idea, for each target pixel the hybrid
filter first employs the ASMF to find the largest de-
noising window subject to the symmetry constraint.
If the number of pixels in the denoising window ex-
ceeds a predefined threshold Tw, the mean of the gray
levels of all pixels in the denoising window is taken as
the output of the hybrid filter. Otherwise, the AMF
with a 3 � 3 pixel window is utilized to determine if

the target pixel is severely distorted by the noise. If
the number of pixels found in the denoising window is
fewer than three, the DWMTM filter is used. If not,
the AMF is applied.

3. Experimental Results and Discussions

Two types of images have been employed to evaluate
the ASMF, the hybrid filter, the DWMTM filter, the
AMF, and the ANNS filter. One is the synthetic
image, and the other is the natural image. The syn-
thetic image is constituted by a set of uniform objects,
all of which are blurred by a Gaussian function of a
specified standard deviation b. The background of
the synthetic image is set to 150. All objects have
different gray levels. By controlling b, the syn-
thetic image serves to simulate the ramp edges of
various slopes. For example, Figs. 3�a� and 3�b�
show the synthetic images with b 	 0, i.e., without
blurring, and b 	 2, respectively. However, the
natural image provides a true complex image condi-
tion, including the real ramp edges, the curved
boundaries, the curved surfaces, and the corners, for
performance evaluation of all five filters. Figures
4�a�–4�c� give the three natural images used in this
study, which are Lena, Cameraman, and Peppers,
respectively. The sizes of the synthetic and the nat-
ural images are all 256 � 256 pixels.

The noise-corrupted versions of the synthetic and
the natural image are simulated by superimposing
G�0, n� onto the image, where G�0, n� denotes the
zero-mean, additive white Gaussian noises of the
specified standard deviation n. The filter perfor-

Fig. 5. �a� RMSEs and �b� the RMSDGs achieved by the five filters
with n 	 15 and b 	 0, 0.5, 1, 2, 3, and 4.

Fig. 6. �a� RMSEs and �b� the RMSDGs achieved by the five filters
with n 	 25 and b 	 0, 0.5, 1, 2, 3, and 4.

Table 1. Parameter Settings Used in the Experiments for the DWMTM
Filter, the AMF, the ANNS Filter, the ASMF, and the Hybrid Filter

Filter Window Size Threshold

DWMTM DLWk 	 best Tdwmtm 	 2n

Filter DSWk 	 DLWk�2
AMF AWk 	 best Tamf 	 3n

ANNS Filter Qanns 	 best Tanns 	 2d�

ASMF Lasmf 	 best Tasmf 	 1.3n

Wkirsch 	 5 or 7
Hybrid Filter Lasmf 	 best Tdwmtm 	 2n

Wkirsch 	 5 or 7 Tamf 	 3n

Tw 	 max�Lasmf � 4, 3� Tasmf 	 1.3n

DLWk 	 DLWk�2
DSWk 	 DLWk�2
AWk 	 Lasmf�2
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mance is evaluated on the basis of the root-mean-
squared error �RMSE� and the root-mean-squared
difference of gradient �RMSDG� between the output
image �i.e., the denoised image� and the uncorrupted
image. Let f �i, j� and f̃ �i, j� denote the gray levels of
the uncorrupted image and the output image, respec-
tively, at the position �i, j�. Suppose the size of the
image is Nf � Nf. Then the RMSE is defined as

RMSE � � 1
Nf

2 �
i	1

Nf

�
j	1

Nf

� f �i, j� � f̃ �i, j��2	1�2

,

(11)

and the RMSDG is defined as

RMSDG 	 � 1
Nf

2 �
i	1

Nf

�
j	1

Nf

��f �i, j� � �f̃ �i, j��2�1�2

, (12)

where �g stands for a two-dimensional gradient of g
and ��u, v�� 	 �u2 � v2. Whereas the RMSE mea-
sures the overall intensity similarity between the
output and the uncorrupted images, the RMSDG em-
phasizes the variation of the high-frequency image
structures of both images. For a more reliable per-
formance evaluation, given n, five corrupted images
have been generated for each synthetic or natural
image. The efficacy of a filter on removing G�0, n�
from the a corrupted synthetic or natural image is
then defined as the averages of the five RMSEs and
the five RMSDGs corresponding to the five corrupted
images, respectively.

To minimize the potential bias that is due to the
improper implementation of the filters, the values for
the crucial parameters required in the five filters
have been assigned on the basis of three principles.
One is to use the values suggested by the previous
studies. Another is to test a wide range of values
and choose the one yielding the best performance in
terms of the RMSEs, which tries to ensure that com-
parisons among these five filters are made on the
basis of their best performances. The third is to
adopt the empirical values only for the proposed fil-
ters, which is to avoid giving any preference to the
proposed filters. As a summary, Table 1 lists the
parameter settings used in this study. The defini-
tion of these parameters may be found in Section 2.
The values for the window size DSWk and the thresh-
olds Tdwmtm, Tamf, and Tanns are assigned according

Fig. 7. �a� RMSEs and �b� the RMSDGs achieved by the five filters
with n 	 35 and b 	 0, 0.5, 1, 2, 3, and 4.

Fig. 8. �a� Corrupted synthetic image with �b, n� 	 �2, 25�, and
the denoised image derived with �b� the DWMTM filter, �c� the
AMF, �d� the ANNS filter, �e� the ASMF, and �f � the hybrid filter.
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to the suggestions made by Ding and Venetsanopou-
los,17 Fong et al.,14 and Paranjape et al.,11 respec-
tively. The values for the window sizes DLWk, AWk,
Qanns, and Lasmf are chosen to give the best perfor-
mances from a wide range of values. The values for
the Tw, DLWk, and AWk used in the hybrid filter and
the Tasmf and Wkirsch used in both the ASMF and the
hybrid filter are all decided empirically.

A. On the Synthetic Images

Figures 5–7 give the performance of the five filters on
the synthetic images for n 	 15, 25, and 35, respec-
tively. Figures 5�a�, 6�a�, and 7�a� show the perfor-
mance in terms of RMSEs, and Figs. 5�b�, 6�b�, and
7�b� show the performance in terms of RMSDGs.

For each n, six different b’s have been considered,
i.e., 0, 0.5, 1, 2, 3, and 4. The small b’s are to
simulate the image structures with steplike edges,
and the large b’s are to account for the slowly vary-
ing ramp edges. For visual inspection, for example,
Figs. 8 and 9 show the denoised images and the gra-
dient magnitude images derived by the five filters for
�b, n� 	 �2, 25�, respectively. Figures 8 and 9 dem-
onstrate that the ASMF and the hybrid filter yield
more pleasant results on the flat areas and the ramp
edges than the other three filters. This observation
verifies the theoretical analysis that the ASMF is
better than the DWMTM filter, the AMF, and the
ANNS filter in terms of estimation errors as given by
Eqs. �5�–�10�.

The experimental results clearly show that the pro-
posed ASMF and the hybrid filter outperform the
DWMTM filter, the AMF, and the ANNS filter on the
synthetic images with slowly varying ramp edges.
Except the RMSDGs for �b, n� 	 �1, 35� and �2, 35�,
when b 	 1, the proposed ASMF and the hybrid
filter are superior to the other three filters in terms of
the RMSE and the RMSDG. It supports the expec-
tation that the gradient similarity criterion and the
symmetry constraint for region growing may signifi-
cantly enhance the estimation accuracy for the image
with the ramp edges. However, for the steplike
edges, i.e., b � 0.5, the ASMF is still better than the
AMF and the ANNS filter in most cases but becomes
comparable with or slightly worse than the DWMTM
filter. The ASMF loses its superiority over the
DWMTM filter mainly because the ramp structures

Fig. 9. �a� Gradient magnitude of the uncorrupted synthetic im-
age with b 	 2, and the gradient magnitude of the denoised image
derived with �b� the DWMTM filter, �c� the AMF, �d� the ANNS
filter, �e� the ASMF, and �f � the hybrid filter for the corrupted
image �b, n� 	 �2, 25�.

Fig. 10. �a� RMSEs and �b� the RMSDGs achieved by the five
filters with n 	 15 for the three natural images, i.e., Lenna,
Camerman, and Peppers.

5200 APPLIED OPTICS � Vol. 40, No. 29 � 10 October 2001



become less significant as b becomes smaller. The
reason why the AMF and the ANNS filter are gener-
ally inferior to the other three filters for all tested
synthetic images may be ascribed to the use of the
corrupted pixel intensity as the reference for the sim-
ilarity measurement, which tends to give a biased
average.

By combining the advantages of the proposed
ASMF, the DWMTM filter, and the AMF, the per-
formance of the hybrid filter has been shown to be
as good as that of the ASMF for b 	 1 and similar
to that of the DWMTM filter with the corners well
preserved for b � 0.5. The reason is obvious.
When b 	 1, the hybrid filter basically counts on
the ASMF for the flat areas and the gentle ramp
edges in the synthetic images. When b � 0.5, the
hybrid filter uses the ASMF on the flat areas and
the AMF or the DWMTM filter on the steep ramp
edges. Therefore, if the hybrid filter can switch
among these three filters effectively, the hybrid fil-
ter should be superior to the ASMF, the DWMTM
filter, and the AMF filter. However, as the image
gets noisier, the judgement on filter switching may
become less effective. This accounts for why the
hybrid filter has the best performance when n 	 15
among all cases with b � 0.5, as shown in Figs.
5–7. As n increases, for b � 0.5, the performance
of the ASMF degrades and becomes worse than that
of the DWMTM filter when n 	 25, as illustrated in
Figs. 6 and 7.

B. On the Natural Images

As on the synthetic images, three different Gaussian
noises with n 	 15, 25, and 35 have been added to
each natural image. The performances achieved by
the five filters are plotted in Figs. 10–12 for n 	 15,
25, and 35, respectively. Figures 10�a�, 11�a�, and
12�a� show the performance in terms of RMSEs, and
Figs. 10�b�, 11�b�, and 12�b� show the performance in
terms of RMSDGs. For visual evaluation, the de-
noised Lenna, Cameraman, and Peppers images for
n 	 25 are provided in Figs. 13–15, respectively, and
their gradient magnitudes are given in Figs. 16–18,
respectively. Because the natural images is abun-
dant in the high-order structures such as the ramp
structures and the curved surfaces, the experimental
results shown in Figs. 10–12 confirm the superiority
of the ASMF and the hybrid filter. And the hybrid
filter is slightly better than the ASMF. Unlike on
the synthetic images, the proposed filters have been
shown to be better than the DWMTM filter, the AMF,
and the ANNS filter in terms of the RMSEs and the
RMSDGs in all cases tested on the natural images.
It is probably because the natural images have much
richer ramplike structures than the synthetic im-
ages.

From Figs. 13–15 one can also find that the ASMF
and the hybrid filter have attained much more pleas-
ing results on the originally smooth curved surfaces
and flat areas. Some typical examples are the skin
surface of the woman’s shoulder and face in Lena, the
sky and the vertical rod of the tripod in Cameraman,

Fig. 11. �a� RMSEs and �b� the RMSDGs achieved by the five
filters with n 	 25 for the three natural images, i.e., Lenna,
Camerman, and Peppers.

Fig. 12. �a� RMSEs and �b� the RMSDGs achieved by the five
filters with n 	 35 for the three natural images, i.e., Lenna,
Camerman, and Peppers.
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and the surfaces of various peppers in Peppers. Al-
though the RMSEs achieved by the hybrid filter are a
little smaller than those by the ASMF, the differences
between the outputs of these two filters are barely
perceivable.

Both the ASMF and the hybrid filter were able to
preserve the fine details better than the other three
filters not only according to the RMSDGs given
in Figs. 10�b�, 11�b�, and 12�b� but also visually
appreciable from the denoised images. As exam-
ples, one representative fine detail area has been
circled out for each natural image with a white
ellipse as shown in part �a�’s of Figs. 13–18. It is
obvious that the hat decoration strips in Lena, the
columns of the building in Cameraman, and the

bright strips in Peppers have been strikingly well
preserved by the ASMF and the hybrid filter. In
contrast, these fine details have been severely
smeared by the DWMTM filter, the AMF, and the
ANNS filter. Especially, the DWMTM filter has
destroyed the fine details to a greater extent than
the AMF and the ANNS filter owing to the incorpo-
rated median filter. For example, only the DW-
MTM filter failed to preserve the nose tip of the
photographer and the bright strip within the leg of
the tripod closest to the photographer in Camera-
man, as can be seen in Figs. 14�b� and 17�b�. That
may partially account for why the DWMTM filter
ranks the last in terms of the RMSEs on the natural
images.

Fig. 13. �a� Corrupted Lenna image with n 	 25, and the de-
noised image derived with �b� the DWMTM filter, �c� the AMF, �d�
the ANNS filter, �e� the ASMF, and �f � the hybrid filter. The
white ellipse indicates the fine details that may be easily smeared
out by the filters.

Fig. 14. �a� Corrupted Cameraman image with n 	 25, and the
denoised image derived with �b� the DWMTM filter, �c� the AMF,
�d� the ANNS filter, �e� the ASMF, and �f � the hybrid filter. The
white ellipse indicates the fine details that may be easily smeared
out by the filters.
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4. Conclusions

Two new noise-reduction algorithms, namely, the
ASMF and the hybrid filter, have been proposed in
this paper. To ameliorate the deficiency of the con-
ventional noise-reduction algorithms based on the
flat facet model in estimating the ramp structures,
the ASMF has been designed with the assumption of
the slope facet model. A novel region-growing
scheme incorporating the gradient similarity crite-
rion and subject to the symmetry constraint has been
suggested by the ASMF. The gradient similarity
criterion ensures that all pixels in a denoising win-
dow are approximately on the same ramp structure
or flat area, which has allowed more pixels to be
included in a denoising window for a statistically

better estimation. The additional advantage of us-
ing the gradient similarity rather than the intensity
similarity as the criterion for region growing is that
all pixels in a denoising window would be intensity
irrelevant. Intensity irrelevancy is an important
feature because the mean of all noises in a denoising
window will be roughly the same as the mean of each
individual noise. With this feature, one may expect
that the residual noises remained at all target pixels
after the mean of the pixel intensities in the corre-
sponding denoising windows is taken will be approx-
imately the same.

The symmetry property plays a decisive role in
ensuring the correctness of the estimation in the ex-
pectation sense. It has been made possible by mak-

Fig. 15. �a� Corrupted Peppers image with n 	 25, and the
denoised image derived with �b� the DWMTM filter, �c� the AMF,
�d� the ANNS filter, �e� the ASMF, and �f � the hybrid filter. The
white ellipse indicates the fine details that may be easily smeared
out by the filters.

Fig. 16. �a� Gradient magnitude of the uncorrupted Lenna image,
and the gradient magnitude of the denoised image derived with �b�
the DWMTM filter, �c� the AMF, �d� the ANNS filter, �e� the ASMF,
and �f � the hybrid filter for the corrupted Lenna image with n 	
25. The white ellipse indicates the edges that may be easily
smeared out by the filters.
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ing sure that all pixels in the denoising window can
be paired up such that every pair of pixels are sym-
metric with respect to the target pixel. As a conse-
quence, the symmetry property guarantees that the
mean of the signal portions of all window pixels
would be the same as that of the target pixel on a
ramp structure or a flat area.

The potential weak point of the ASMF lies in the
limited number of pixels that might be found for a
denoising window on a step edge, which may lead to
a statistically unreliable result. To overcome this
problem, the hybrid filter combines the advantages of
the ASMF, the DWMTM filter, and the AMF filter in
such a way that the latter two are applied to the
corners, the lines, and the step edges, whereas the

former one is responsible for the other types of struc-
tures.

The proposed two filters, the ASMF and the hybrid
filter, have been compared with three conventional
filters, the DWMTM filter, the AMF, and the ANNS
filter by use of the synthetic and the natural images
corrupted by the Gaussian noises of n 	 15, 25, and
35. On the synthetic images, the proposed two fil-
ters outperform the conventional filters in almost all
cases when b 	 1. For b � 0.5, the hybrid filter
and the ASMF rank the second and the third in most
cases, respectively, but only slightly worse than the
DWMTM filter. On the natural images, the pro-
posed two filters are superior to the three conven-

Fig. 17. �a� Gradient magnitude of the uncorrupted Cameraman
image, and the gradient magnitude of the denoised image derived
with �b� the DWMTM filter, �c� the AMF, �d� the ANNS filter, �e�
the ASMF, and �f � the hybrid filter for the corrupted Cameraman
image with n 	 25. The white ellipse indicates the edges that
may be easily smeared out by the filters.

Fig. 18. �a� The gradient magnitude of the uncorrupted Peppers
image, and the gradient magnitude of the denoised image derived
with �b� the DWMTM filter, �c� the AMF, �d� the ANNS filter, �e�
the ASMF, and �f � the hybrid filter for the corrupted Peppers image
with n 	 25. The white ellipse indicates the edges that may be
easily smeared out by the filters.
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tional filters in all cases tested. Interestingly, the
DWMTM filter turns out to be the worst among all
filters for the natural images. The proposed filters
have not only achieved better performances in terms
of the RMSEs and the RMSDGs but also attained
visually more pleasing results for almost all of the
tested cases.

The authors thank the National Science Council,
Taiwan, for its support with the grant number
NSC89-2213-E-002-130.
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