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ABSTRACT

Positron emission tomography (PET) can reveal subtle metabolic process, which is an important
modality for diagnosis. However, spatial resolution of PET images is not as good as computed tomo-
graphy (CT) or magnetic resonance imaging (MRI), which can show precise anatomical details. Our
study is to improve image quality of PET using better reconstruction methods. In this paper, we use a
new and efficient method to incorporate the correlated structural information obtained from MRI. A
mean estimate smoothing the maximum likelihood estimate (MLE) locally within each region of inter-
est is derived according to the boundaries provided by the structural information. Since the bounda-
ries may not be correct, a penalized MLE using the mean estimate is sought. The resulting recon-
struction is called a cross-reference maximum likelihood estimate (CRMLE). The CRMLE is obtained
through a modified expectation maximization (EM) algorithm, which is shown to be computationally

efficient by our phantom and clinical studies.
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1. INTRODUCTION

Like X-ray CT, PET images can be reconstructed
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using filtered-backprojection (FBP) or convolution-
backprojection (CBP) algorithms. However, since the
FBP algorithm was originally designed for X-ray CT,
many assumptions made for the algorithm does not
hold for PET image reconstruction. To overcome the
problems inherent in the FBP algorithm, various ap-
proaches based on maximum likelihood-cxpectation
maximization (ML-EM) algorithms have been pro-
posed, ¢.g., Shepp and Vardi [1], Lange and Carson [2],
Vardi, Shepp and Kaufman (3], Politte and Snyder [4].
The physical process in PET detection may be mod-
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eled as a Poisson random process. The mean of the ob-
served random variables is indirectly related to the im-
age intensity by a linear transformation. Under this
model, there are some sources of errors intrinsic in the
reconstruction of PET images. One source of error is
caused by the ill-posedness in inverting the linear
transformation. Snyder et al. [5] demonstrated that the
MLE without regularization shows noises and edges
artifacts. A variety of regularization methods have
been studied like the Bayesian approaches with differ-
ent kinds of priors in Hebert and Leahy [6], Green (7],
and so on. We have proposed cross-reference methods
for reconstructing PET images with prior information
(8, 9], which not only fully utilize the correlated struc-
tural information to obtain better reconstructions in
simulation but also retain the computational efficiency
of the ML-EM approach. In this study, we use the
CRMLE method, in which we chose the fused images
from MRI and PET as the prior information. We show
that the method is practically appealing in reconstruct-
ing a Hoffman physical phantom and clinical brain im-
ages.

2. MATERIALS AND METHODS

There are various estimators, each of which best
approximates the unknown parameter to be estimated
in a different sense. The first one is the maximum like-
lihood (ML) estimator, the second and the third one
are the maximum a posteriori (MAP) and minimum
mean-square-error  (MMSE) estimator, respectively
[10]. In this study, we use the penalized ML estimator
with prior information in penalty to improve PET im-
age reconstruction, which can be regarded as a variant
of Bayesian MAP estimators. Our experimental de-
signs are described as follows:

1. We chose MRI images as the source to pro-
vide the prior information. We used
SIEMENS Vision plus 1.5-T scanner. The
scan parameters were TE/TR = 14/500 s, scan
matrix = 256 x 256. The data set was acquired
from an axial view of a 2D Hoffman brain
phantom (see Fig. 1). The phantom was filled
with Gd153-DTPA contrast agent. A T1 im-
age was obtained and stored in a DICOM
(digital image communication of medicine)
format (see Fig. 2).

2. Liquid inside the phantom was emptied and
about 3 mCi of *FDG was injected. Imaging
was performed using a Scanditronix PC-4096-
15 WB PET scanner with a scan time of 10
min. The PET scans were reconstructed using
the convolution back-projection (CBP)
method with a matrix size = 128 x 128.

3. The image fusion technique was implemented
using the “Interactive Data Language (IDL)”
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(Research Systems Inc., Boulder, CO). The
fusion method was developed in house. The
fused image from MRI and PET is shown in
Fig. 3.

4. From the fused image we did the image seg-
mentation to extract the useful prior informa-
tion by a variant of Forgy’s method in cluster
analysis as explained in Appendix II. The
edges between different classes are also dis-
played that can be used for validation and ad-
justments.

5. The original sinogram data was used to recon-
struct images using MLE-EM and CRMLE-
EM, respectively. The differences between the
two images were compared by subtraction of
these two images.

6. Repeat steps 1~5 with clinical brain data.

Extraction of prior information:

One of the major differences between Bayesian
reconstruction and ML-EM method is that Bayesian
method takes into account the prior information to im-
prove the estimate (reconstruction) of the parameter of
interest, see E. U. Mumcuoglu et al [11], L. T.
Hsiao[12] and J. E. Bowsher et al [13]. In this study,
we chose the fused image from MRI and PET as the
prior information. The MRI image can provide good
structural information, while the PET image can pro-
vide physiological and metabolic information. Thus,
the fused image can contain both anatomical and func-
tional information. In regard to segmentation, we use
moving blocks to find the image means and variances
in blocks from the fused image with block sizes equal
to 2x2, 3x3, 4x4, ..., 128x128. Then, we get a distribu-
tion of the variances with respect ‘to different block
sizes. The distribution can be approximated by a nor-
mal distribution where the mean and standard devia-
tion can be calculated. A variant of Forgy’s method in
cluster analysis is used to segment the fused image
[14].

3. RESULTS

1. 2D Hoffman brain phantom: Fig. 5 shows the fused
image of the phantom. Boundaries were extracted
from the image to be used as the prior information
input to the CRMLE-EM code during the recon-
struction (a = 0.0001, with 10 iterations, see Ap-
pendix). The image of the prior information is
shown in the lower right of Fig. 6, and the recon-
structed image by CRMLE-EM is shown in the up-
per left of Fig. 6. The same data was also recon-
structed using the MLE-EM; the reconstructed im-
age 1s shown in the upper right of Fig. 6. The lower
left shows the difference image between the upper
two, that is, the CRMLE image substrates the MLE
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Fig. 1. A 2D Hoffman brain phantom.

Fig. 2. A 2D Hoffman brain phantom imaged by
MRI (SIEMENS Vision plus 1.5T, TE = 500sec, TR
= 14sec, T1 Image).

image. Although the images of MLE-EM and
CRMLE-EM are similar in visualization, the inten-
sity levels of these two are different so that the dif-
ference is as displayed.

2. Clinical brain image: We sclect a patient whose
brain had becn scanncd by MRI and PET, respec-
tively. We manually selected the corresponding 15
slices from MRI images (see Fig. 7). Using our
IDL image fusion code, the 15 fused images were
generated as shown in Fig. 8. These 15 fused im-
ages were then input to the CRMLE-EM code to
get the final reconstructed images as shown in Fig.
9.

Fig. 3. An in-house image fusion program written in

IDL.
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Figure 4: Flow chart of the CRMLE-EM algorithm.

4. DISCUSSIONS

. The cross-reference methods are quite robust to the

mis-registration of boundaries in our previous
simulation studies of [8, 9] and current empirical
studies.

. Semi-automatic method by a variant of Forgy’s

method in cluster analysis is used to segment dif-
ferent regions, which can be improved in the future.

. From phantom studies, two reconstruction methods

were reconstructed at the same iteration numbers: 1,
10, 20, 30, 40, respectively. The CRMLE-EM rc-
sults are shown in the first row of Fig. 10 (A), and
the MLE-EM results are shown in the second row
of Fig. 10 (A). We see that CRMLE-EM contains
more structural information than MLE-EM does.
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Fig. 5. Fused image of PET and MRI images of the
2D Hoffman brain phantom.

Fig. 6: Reconstructed image with CRMLE-EM and
MLE-EM algorithms. The upper left is the
CRMLE-EM reconstructed image, and the upper
right is the MLE-EM reconstructed image. The
difference of the CRMLE image subtracts the MLE
image is displayed in the lower left and the prior in-
formation image is shown on the lower right.

The difference images (CRMLE-EM images -
MLE-EM images) are shown in the third row of
Fig. 10 (A). At the 10th iteration, the difference is
obvious, especially in the boundary. As the itera-
tion number increases, the differences about struc-
tural information remain. The fourth row of Fig. 10
(A) shows the image of the prior information used
in CRMLE-EM reconstruction. The above steps arc
repcated for the clinical studies and the results are

Fig. 8. Fused images of PET and MRI images of the
brain.

shown in Fig. 10 (B). We see that the images of the
CRMLE-EM results contain more structural infor-
mation. Their differences are shown in the third
row of Fig. 10 (B), where the differences in struc-
tural information remain. Although the images of
MLE-EM and CRMLE-EM are similar in visuali-
zation, the intensity levels of these two are different
so that the difference is as displayed.

4. For objective assessment of image quality of the
two methods, receiver operating characteristic
(ROC) curve analysis will be studied in the future.

5. CONCLUSIONS AND FUTURE
WORKS
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Fig. 9. CRMLE-EM reconstructed image (clinical
brain image).

It has been shown in this study that the proposed
CRMLE may take advantage of prior information ef-
fectively (even in the case of incorrect boundary in-
formation). The phantom and clinical studies demon-
strate the improvements of the CRMLE over the MLE
on real PET images. While our current results have
confirmed that the CRMLE is a promising approach,
further studies arc definitely required to make this
scheme clinically applicable. We are interested in pur-
suing further topics including the accelcration of algo-
rithm, automatic image segmentation mecthod, and
quantity analysis of image quality of the reconstructed
images by clinical diagnostic values.
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Appendix

1. The GEM Algorithm for CRMLE:

According to the notations and setups in [1,
3], the observed log-likelihood function in the
incomplete space is

1) = ;:{Z:n'(d)ln[ X ()] - X (d)} + constant.
The CRMLE-EM can be derived as follows.
)lcme =argmin, , ®(A),
where
B = ~I0N) + @l A~ M |

a >0, Auea is the local average of the MLE within
every segmented region and 2-norm is used. Hence,

a A

if a — 0, then ACRMLE — AMLE.

If @ — oo, then ACRMLE — AMEAN .
The Lagrangian function can be obtained after intro-
ducing the Largrangian multipilier, 8 = (8(1),..., B(B)),

Y= —I(X) + ")»— ) "2 —Br;\.
The Kuhn-Tucker (KT) can be applied accordingly.
Also, the modified EM algorithm in 7] can be applied
as follows. The E-step without constant terms be-
comes
O™ | X) — || K = Mouaar 1
= -2 Z p(b,d)X(b)
P p(b,d)X" (b)
+ 22108{17(& )X~ (b)n (d) 3% (b, A" B)
-0 || X = Rogan
The M-step solves

HOO™ X)) K™~ hoawr I} _,
an~(b) '
Hence,
ﬁ(b’) & new .
—_— b,d) = 20[\N"" (b) = v (b)] = O,
= iy~ 3 PO = 20K (B) = Mo ()]
where

& PO ()
’l(by) x (b)z z:-_,p(b'yd))“(b')
That is,

A" (D)) + BA™(b)-C =0,
where
A =2q,

B = p(b) - 20 ke (b), p(b:) = 3§, p(0,d),

C = n(b,),
So, the unique nonnegative solution turns out to be

-B++VB? +4AC

2A
The resulting modified EM algorithm can be stated as
follows.
Choose initial values A %(b)>0,b=1,2,3,..., B.
Compute a new estimate A "“"(b)forb=1,2,3,..., B.
If ®(A"™)- & (A% is smaller than a tolerance,
then stop.
Otherwise, go to step 2 with A °“ replaced by A ™.

A= (b) =

I1. The Algorithm for segmentation:

Let Y, be the intensity of jth pixel of a NxN im-
age, which is assumed to be a random variable follow-
ing a normal distribution. The N-1 sequences of
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block means with different block sizes, from 2x2,
3x3, ..., NxN, are obtained. Then, the maximum and
minimum values of all sequences are calculated, which
are denoted as M and m, respectively. The standard
deviation of the entire image is computed and is de-
noted as S. Suppose that the whole image has K par-
titions, Cj,...,Cx., and the following algorithm is ap-
plied. A variant of Forgy’s method in cluster analysis
is used Step 1 and 2 (e.g., see pp. 112 in [14]).

Algorithm Steps:

Initialization:

The mean of ith partition is set by
wW® =m+i(M -m)/K,i=12,.,K.

The stander deviation of ith partition is set
equally by oi(o) =S5,i=12,..,K.
The iteration number [/ is set to be 0.

Clustering:
The iteration number is incremented by 1,

l=1+1. For each pixel, it is classified into a class
that ?s the maximum probability. That is,
Y. EC where i = argmax P, 0 G0 (¥;) and
U s the class index sdisit, .clrrent iferation.  Let
nf) be the numbers of C It n,() equal to zero
for some i, then ith class is deleted and rearrange the
partition index.
Updating:

The mean and stander deviation of each class is
updated by

(l) g’ Y (1)2 'gf (Y “(l))

,U) » O, nf') -1
Stopping:
If |0 -a'" ke, and |G -6/ ke, Vi,
then stop.

Else, I=1+1 and go to step 2.

, wherei=12,--- K.





