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However , since the filtered -backprojection algorithms
were originally designed for X-ray Cr, many assump-
tions made for these algorithms do not hold for PET
image reconstruction . As a result , the reconstructed
images, especially those with small features , may not
be accurate enough for clinical use [1].

To overcome the potential problems inherent in
the filtered -backprojection algorithm, various ap-
proaches based on maximum likelihood with EM al-
gorithms have been proposed for PET image recon-
struction , e.g., Shepp and Vardi [2], Lange and Carson
[3], Vardi, Shepp and Kaufman [4], Politte and Snyder
[5], Fessler et al. [6]. Theoretically, the physical proc-
ess of a PET system may be modeled as a Poisson ran-
dom process that suggests the random observations in
a PET as Poisson random variables . Moreover, the
mean of these random variables is indirectly related to

1. INTRODUCTION

Positron Emission Tomography (PET) is a func-
tional imaging modality providing biochemical,
physiological , and metabolic information in the human
body. Like X-ray CT, the distribution of radioisotope-
labeled chemicals may be estimated from the measured
gamma photon pairs through filtered -backprojection
algorithms as adopted by most commercial PET sys-
tems accredited to their computational efficiency.
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ABSTRACT 

Maximum likelihood estimate (MLE) is a widely used approach for PET image reconstruction. 
However, it has been shown that reconstructing emission tomography based on MLE without regu- 
larization would result in noise and edge artifacts. In the attempt to regularize the maximum likeli- 
hood estimate, we propose a new and efficient method in this paper to incorporate the correlated but 
possibly incomplete structure information which may be derived from expertise, PET systems or other 
imaging modalities. A mean estimate smoothing the MLE locally within each region of interest is 
derived according to the boundaries provided by the structure information. Since the boundaries 
may not be correct, a penalized MLE using the mean estimate is sought. The resulting reconstruc- 
tion is called a cross-reference maximum likelihood estimate (CRMLE). The CRMLE can be ob- 
tained through a modified EM algorithm, which is computation and storage efficient. By borrowing 
the strength from the correct portion of boundary information, the CRMLE is able to extract the use- 
ful information to improve reconstruction for different kinds of incomplete and incorrect boundaries 
in Monte Carlo studies. The proposed CRMLE algorithm not only reduces the estimation errors, 
but also preserves the correct boundaries. The penalty parameters can be selected through human 
interactions or automatically data-driven methods, such as the generalized cross validation method. 

Biomed Eng Appl Basis Comm, 2001 (August); 13: 190-198. 
Key Words: Maximum likelihood estimate, generalized EM algorithm, regularization, generalized 
cross-validation. 
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the target image intensity by a linear transformation.
Under this model, there are at least two sources of er-
rors intrinsic in the reconstruction of PET images. One
is due to the random variation of Poisson random vari-
ables. This can be handled via the maximum likelihood
approach as attempted by [2-6]. A good review on
the MLE approaches may be found in the book by
Snyder and Miller [7].

The other source of error is caused by the ill-
posedness in inverting the linear transformation. This
can be managed by the regularization methods [8-10].
Snyder et al. [11] demonstrated that the MLE without
regularization will show the noise and edge artifacts.
Therefore, it is important to regularize MLE for a bet-
ter reconstruction. A variety of regularization methods
have been studied in literature, like the early stopping
rule in Veklerov and Llacer [12], the method of sieves
in Snyder and Miller [13], the Bayesian approaches
with different kinds of priors in Hebert and Leahy [14],
Green [15], Herman et al. [16], and so on. Ouyang et al.
[17] proposed to use the correlated structure informa-
tion as the prior information and obtain the Bayesian
reconstruction of PET via the "weighted line site"
method in their series of studies. While the correlated
structure information contains more information about
boundaries than the mathematical form of regulariza-
tion does, the Bayesian reconstruction needs more
computational efforts than the MLE-EM approaches.
Therefore, in this paper, we would like to investigate a
new and efficient approach to integrate the correlated
but incomplete structure information using the MLE-
EM approach. The correlated boundary information is
obtained from an expert, an informed audience or the
same or other tomography systems such as transmis-
sion PET, X-ray CT scan, and MRI. The intensities
within the boundaries are not necessarily uniformly
distributed. The proposed method, which is named as a
cross-reference maximum likelihood estimate
(CRMLE), has been shown to not only fully utilize the
correlated structure information to obtain a better re-
construction, but also retain the computational effi-
ciency of the MLE-EM approach in contrast to the
Bayesian approach.

This paper is organized as follows. The model of
PET, the ill-posedness, stability, and finite sample be-
haviors of MLE will be investigated in Section 2.
Because of these phenomena, we will also discuss
some versions of regularization based on the MLE in
Section 2. Via incorporating the information of local
smoothness, we can get better reconstruction images
after cross-referring the correlated information. This
new method, CRMLE, will be introduced in Section 3.
The implementation issues such as the influences and
selection rules of penalty parameters will be investi-
gated in Section 4. The implementation results and
discussions are also presented in this section. Conclu-
sions and future studies are provided in Section 5.
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2. PEI' MODEL AND MLE BEHAVIOR

Consider the phantom illustrated Figure 1. Sup-
pose that there are three anatomic boundaries (ellipses)
that define three regions, each of which may be an or-
gan or a portion of a tissue. The emission intensity in
one region may be homogeneous within its boundary
as in the upper and right regions of Figure 1. That is,
the functional boundaries of emission intensities are
the same as the anatomic boundaries in the upper and
right regions. But, if some part of a region becomes
abnormal, the emission intensity will be inhomogene-
ous within the region as the left region of Figure 1.
The functional boundaries are thus different from the
anatomic boundaries. It is aimed to use the information
of anatomic boundaries to enhance the reconstructed
images without destroying the functional boundaries.

The model of the PET system employed in this
studied follows that used in [2]. Let A denote the
image to be reconstructed, which is decomposed into B
square boxes (or pixels). The number of emission
photon pairs generated in box b, n(b), is assumed to be
Poisson distributed with a mean, A (b), for b = 1,
2, ..., B. Owing to the random variation of Poisson
random variables, the actual number of emission, n(b),
may be quite different from the mean, A (b). In par-
ticular, for a large value of A (b), the variation is
large since the variance of a Poisson random variable
is equal to the mean.

When a positron radiates and annihilates with a
nearby electron, two photons are generated and trav-
eled in almost an opposite direction along a line. If two
detectors within a preset time window receive these
two photons, an ..annihilation event is identified in the
tube formed by these two detectors. Let D denote the
total number of tubes. For a PET system with Nd dis-

tinct detectors, there can be at most (2d ) tubes.

Unlike the filtered-backprojection algorithms that
assume a space-invariant point spread function in gen-
eration of projection data, the "space-variant notion" is
incorporated in the PET model employed in this study

Fig.1 Test phantom 1 is shown.
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that may describe the physical process more closely.
Each box b is associated with a value, p(b, d), as the
probability for a pair of photons generated in the box b
and detected by the tube d, where b = 1, 2, ..., B and
d = 1, 2, ..., D. One possible assignment for p(b, d)
would be the angle of view from box b to tube d.
Without loss of generality,

D
p(b,•) _ I p(b, d) is assumed to be 1.

d=1
According to the "thinning" property of Poisson

random variables [4,18], the total number of coinci-
dences detected by the d-th tube, n' (d) is an inde-
pendent Poisson random variable,

n (d) - Poisson (A.* (d)), (1)

where '-' means 'distributed as,' and
* B

A (d) = I A(b)p(b, d)• (2)
b=1

To see the performance of MLE in finite samples,
Monte Carlo studies are simulated. Suppose the target
phantom is as Figure 1. The number of boxes, B, is
equal to Nb * Nb = 64*64 and the number of detectors
is Nd = 64. The MLE can be reconstructed by the EM
algorithm in Shepp and Vardi [2]. The log-likelihood
of MLE-EM with respect to the iteration number is
plotted in Figure 2. The log-likelihood is non-decreasing
as the iteration number increases, which is assured by
the property of EM algorithm. However, the log-
likelihood of the true phantom is not the same as the
converging value via the MLE-EM. At some iteration
number, like 19 in this case study, the log-likelihood of
MLE-EM would be closest to that of the true phantom.
But as the iteration number increases further, the log-
likelihood will be more and more away from that of
the true phantom! To obtain the best reconstructed im-
age before it deteriorates, Veklerov and Llacer [12]
discussed the stopping rule based on statistical hy-
pothesis testing. However, it is difficult to choose a
proper stopping time in practice. Even if we select a
good stopping time, such as 19 iterations in Figure 2,
the reconstructed image in Figure 3 is still blurred
without sharp boundaries and fine local structures. As
the number of iterations increases, the reconstructed
image becomes more and more blurring and spiky!

This is a commonplace phenomenon for MLE
approaches. Snyder et al. [11] showed that edge and
noise artifacts would be incurred due to the ill-
posedness of PET. A good alternative to reduce the
edge and noise artifacts is to use the regularization
methods. Several regularization methods have been
proposed previously. Silverman et al. [19] and Green
[20] added in a smoothness penalty in the regulariza-
tion method and modify the EM algorithm accordingly.
Snyder and Miller [13] used the method of sieves to-
gether with the EM algorithm. Green [15] also consid-
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ered the modified EM algorithm for Bayesian ap-
proach with prior information about the patterns of
target images. In addition, the minimax estimator
based on tapered orthogonal series in Johnstone and
Silverman [21], the adaptive constrained methods of
regularization estimator in Lu and Wells [10] are also
proposed among many others.

To see the effects of regularization, a penalized
MLE (PMLE) with a global penalty is demonstrated.
Instead of maximizing the log-likelihood, one mini-
mizes the negative value of log-likelihood and a
2-norm penalty. That is, this PMLE is

A PMLE = arg minx{ -l(A) + allAII2 }, (3)

where 1( 2.) is the to -likelihood, a is a positive pen-
alty parameter and h All is the 2-norm of A. Ifa - 0 ,
then AC,u„., - A,,., On the other hand, if a - - , then

The penalty parameter, a, balances the trade-
off between the log-likelihood and the penalty term.

-EM
--- MLF..

2

------ - --- - ----

30 40

Snanm nuRlmr

so 0

Fig. 2 The log-likelihoods of the MLE -EM, the con-
verging MLE, and the true phantom with respect to
the iteration numbers are displayed.

Fig. 3 The MLE-EM reconstruction is displayed
with 19 iterations.
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The EM algorithm can be applied to find the
PMLE . The updating formula becomes

-1 + 1 + 8an(b,.)
(4)

4a
where

b P(b,d)n*(d)X' b (5)n( ,.)_ ) g(
, _,p(b,d)X (b )

Note that this is the unique nonnegative solution
in the M step. The resulting estimates will be different
for a different a. The log-likelihoods and 2-norm dif-
ferences of MLE, PMLE and the true phantom can be
plotted. If we choose a equal to the minimum value,
0.0001 in this case, then the PMLE has a less 2-norm
difference with respect to the true phantom than that of
the MLE. But the improvement is not too much as one
can see that the PMLE in Figure 4 is about the same as
the MLE in Figure 2. If the penalty a is chosen too
large, then the PMLE will approach 0 and have even

Fig. 4 The PMLE-EM reconstruction is displayed
with penalty parameter 0.0001 and 19 iterations.

Fig. 5 The incomplete boundary information is
shown.
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bigger 2-norm differences with respect to the true
phantom than those of the MLE. Therefore, the se-
lection of the penalty parameter is important.

The choice of penalty term is substantial as well.
Green [20] suggested another form of penalty form,

log {cosh(A(bo) - A(b, )} , where the sum is taken
over the neighboring pixel pairs. The resulting EM al-
gorithm is difficult to obtain a closed form solution in
the M-step. He proposed the One-Step-Late (OSL) al-
gorithm that approximates the current solution via the
previous solution in the M-step. These penalized terms
can also be interpreted in the Bayesian framework.
Geman and Geman [22] used the global energy func-
tion with Gibbs sampling technique to obtain the
Bayesian reconstruction. Ouyang et al. [17] tried to in-
corporate the local smoothness contained in the
boundaries to the Bayesian reconstruction by Gibbs
samplings. In order to achieve this goal, they need to
consider the energy function in the presence of line site
induced by boundaries. While it is appealing in com-
bining the local smoothness information, the computa-
tion and complexity is quite demanding. In this paper,
we propose a more efficient way to make use of the lo-
cal structure as presented in the following section.

3. CROSS-REFERENCE MLE-EM

Since a boundary defines a region that is likely to
have homogeneous emission intensities, we can get a
mean estimate, AMF.AN , by doing the local average of
the MLE within the boundaries. For instance, if the
boundaries are as in Figure 5, the mean estimate is as
Figure 6. However, the anatomical boundary may not
be consistent with the functional boundary. That is, the
boundary information may be incomplete. For example,
the boundaries in Figure 5 do not contain all the
boundaries in Figure 1. Thus, the mean estimate is
only a rough estimate for the purpose of reference. In
order to retain the local structure in the MLE, one
needs to cross-refer the MLE and the mean estimate.
Thus, we define the Cross-Reference MLE (CRMLE)
as

AcRMLE = arg min,,, m(il) , (6)

where

O(A)=-l(A)+aIIA-A. 112, (7)
a > 0 and 2-norm is used for the penalty term.
Suppose a - 0 , then A,RNLE - AMLE If a - - , then

A." - AMEAE • The resulting images by the CRMLE
for one penalty parameter are shown in Figure 7. It is
evident from Figure 7 that the CRMLE can borrow the
strength from the local smoothness information via
choosing a proper penalty parameter.

The Lagrangian function can be obtained after in-
troducing the Lagrangian multiplier , /3 = (/3(1), /3(2),
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plied to find the MLE satisfying the KT conditions.
Note that this is exactly the corresponding EM algo-
rithm for the penalized likelihood in equation (7), not
the One-Step-Late algorithm in [20]. The E-step
needs to calculate

Q(A""" I e ) - a llV - -AM 112
>p(b, d)A (b)

+;;1og[p(b,d)X-(b)}n (d) p(b,d)7^ d(b)

^e-,p(b',d)e (b)

-a II A -AM IIz,
Fig. 6 The mean estimate based on the boundary
information and MLE-EM.

a{Q(A-I ) -aII A' -AMEAN 11
2" 0 (12).

al-(b)

Then, we have

n(b;) n
b d 2 k- b b 0A 13fi (b) - p( , ) - a[, ( ) - )J = ,M&( ( )

where

n(b,,) _ e' (b) 2 p(b,d)n*(d) (14)

d=1 Xb-4A°"(b')p(b',d)

That is,

A[A"(b)] 2 +BA-(b)-C =0, (15)
where

A = 2a, . (16)
B = p(b,) - 2a AME.,N (b), p(b,•) (17)
C=n(b;). (18)

if we drop the term that does not involve A,X" . The M-
step needs to find X- that maximizes the above
function . So, we look at the solution of

Fig. 7 The CRMLE-EM reconstruction is dis-
played with penalty parameter 0.0002 and 15 it-
erations.

.... P(B ))T

W = -1(A) + a I I A - A. I I2 - f T.t. (7)

If the MLE is required to be nonnegative , then the
Kuhn -Tucker (KT) conditions can be applied to find
the MLE [18]. The KT conditions are listed as fol-
lows.

1. A(b) Z0 forallb,

2 a1(A.)

al(b) z
s 2a(A(b) - AME,w (b)),

3. A(b) al(A)
al(b)

4. S(bo )S(b,) al(bo )aA(b, )

directions of s.

< 0 for all feasible
i

The modified EM Algorithm in [20] can be ap-

(9)

=2a(A2(b)-A(b)AM ( b)), (10)
x

a21(A)

There are two possible roots of the above equa-
tion and the unique nonnegative root is

(b)=-B+ B2+4AC
2A

(11)

(19)

The resulting modified EM algorithm can be
stated as follows.

Algorithm 3.1:
1. Choose initial values A "d(b) > 0, b = 1, 2, 3,..., B.
2. Compute a new estimate A "'(b)by (19) for b = 1,

2, 3,..., B.
3. If 1 ( A new)_ (D ( ) old) is smaller than a tolerance,

then stop.
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Otherwise, go to step 2 with A old replaced by A new

The computation cost and complexity for the pro-
posed modified EM algorithm of CRMLE is of the
same order as those of the MLE-EM. The convergence
can be assured for any AMEAN because we only need
to shift the origin to AMEAN and use the Proposition in
Green [20]. Thus, the monotonic convergence also
holds for the modified EM algorithm of CRMLE.
That is, the computation advantages of the EM algo-
rithm are intrinsic to the modified EM algorithm in
finding the CRMLE. The finite sample behaviors of
CRMLE and the selection of penalty parameters are
explored in the following section.

4. IMPLEMENTATION AND
DISCUSSIONS

In contrast to the selection of a good iteration
number such that the log-likelihood of MLE-EM is
close to that of the true phantom as in Figure 2 for the
MLE-EM, the more crucial factor for the CRMLE is
selection of the penalty parameter. The finite sample
behaviors of CRMLE depend heavily on the choice of
penalty parameters. The log-likelihood of the mean es-
timate is usually smaller than those of the true phan-
tom and MLE as one can see in Figure 8. This is be-
cause the incomplete boundaries will oversmooth the
image and pull down the log-likelihood to be below
that of the true phantom. Since the log-likelihood of
the true phantom lies somewhere in between those of
MLE and mean estimate, it is reasonable to use the

log CRMLE
--- log M
---- lag MEPN
--- log TRIE
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mean estimate as a reference point in the framework of
MLE. As a - 0, the log-likelihood of CRMLE
will approach that of the MLE. But if a - oo , the
log-likelihood of the CRMLE will decrease to that of
the mean estimate. Thus, with a proper choice of a ,
the log-likelihood of CRMLE would be about the same
as that of the true phantom. If the discrepancy meas-
ure is changed from the log-likelihood differences to
the 2-norm differences with respect to the true phan-
tom, the influences of penalty parameters in terms of
2-norm differences are shown in Figure 9. If the pen-
alty parameter is chosen in the neighborhood of mini-
mum point, 0.0005, the CRMLE can indeed beat the
mean estimate and MLE both numerically in Figure 9
and visually in Figure 7. The optimal values of a
may be slightly different in Figure 8 and 9 owing to
the difference of discrepancy measures.

In practice, the true phantom is unknown and the
optimal value of a is impossible to obtain from the
plots in Figure 8 or 9. One may consider a dynamic
graph function, such as a scrolling box or slider, to
choose a proper a with user's interactions. Another
way is to reroute to an automatically data-driven
choice of penalty parameters. Leave-one-out cross-
validation is one possible way. The idea is to remove
one observation at a time. The remaining observations
can be used to estimate the parameters. The fitted pa-
rameters can be applied to predict the value that is
omitted. The sum of prediction square errors would
depend on the penalty parameters. The minimum value
of the sum of prediction square errors can provide a
suitable choice for the penalty parameters. This
method can be generalized to the transformed model of

1=11--- --- ..........

____ MN.1 LJE' 2

---------------------------------

-----------------

d

1og70(,ipha )

3 -2

Fig. 8 The log-likelihoods of the CRMLE-EM, the
converging MLE, the mean estimate and the true
phantom with respect to penalty parameters are
displayed.

---------------------------- __---------__-

n-.000.5

logt 0( Apha )

Fig. 9 The 2-norm differences of the CRMLE-EM,
the converging MLE, the mean estimate and the
true phantom with respect to penalty parameters
are displayed.
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ridge regression such that the resulting choice of pen-
alty parameters is rotational invariant. This is called
as the generalized cross-validation (GCV) [23]. The
GCV function of the ridge estimate for the PET recon-
struction may be derived as

I ^D̂ Da z 2

V(a) = D r d, +Da) Z' (20)
D

{D d DDa
+(D-D')1}:

where M = [p(b,d)]T, d, together with u;, i=1, 2, ..., D,
are the eigenvalues and eigenvectors of MMT, D' is the
rank of MMT, z, = u, y*, andy*(d) - n'(d)-y'ba(b,d) &,(b)

The GCV function against the penalty parameters is
plotted in Figure 10. The minimum value, 0.0002, is
slightly different than the minimum values, 0.0005, in
Figure 8 and 9. The CRMLE with a proper penalty pa-
rameter selected in Figure 10 is shown in Figure 7.
These two reconstructions do not differ too much in
quality. If the boundary information is complete and
correct, then the mean estimate will be a very good es-
timate. However, if the boundary information is in-
complete or incorrect, then the mean estimate will
oversmooth and mask the local fine structures. Via the
CRMLE with a proper penalty parameter, we can keep
the local fine structures and make use of the boundary
information at the same time . The resulting reconstruc-
tion image in Figure 7 is very promising.

In calculating the GCV function, the eigenvalues
and eigenvectors of MMT are needed. The eigenvalue
or singular value decomposition (EVD or SVD) for a
matrix, symmetric or not, can be obtained by the
imsl_f_eig_sym or imsl_f_lin_svd_gen functions in
the IMSL C/MATH library for small- to medium-size
matrices. Due to the limit of hardware, the above func-
tion does not work for large-size matrices. The power

\ mn..066f

-6

"lot alo')

Fig. 10. The GCV curve with respect to penalty
parameters is drawn
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method together with deflation [24] can be applied
then to obtain the EVD or SVD. The eigenvalues ob-
tained by the IMSL and power methods are not the
same. To check the correctness of these two ap-
proaches, we can plot the error of I MM T u; - d, u, I , in
2-norm, for all eigenvalues d, and eigenvectors u,. We
find that the IMSL function does not get the right EVD
at the beginning part and does a good job at the ending
part. The power method is on the contrary. Therefore,
if the leading part of EVD is needed, the power
method is proper. But if the ending part of EVD is im-
portant, then the IMSL method is suitable. An im-
proved numerical technique dominates the IMSL and
power methods will be certainly useful in order to find
the correct GCV. The EVD is quite computation de-
manding. But it is only needed to be done in one time
since the matrix M = [p(b,d)JT is fixed once the con-
figuration of PET system is set up.

If the boundaries are not only incomplete but also
incorrect due to misalignment, the mean estimate will
be even far away from the true phantom. However, the
CRMLE can still pull out the useful information with
unsharp boundaries for those incorrectly specified
boundaries. That is, the CRMLE can distinguish the
correctly and incorrectly specified boundaries auto-
matically. For those correctly specified boundary in-
formation, the CRMLE makes full use of the informa-
tion because the mean estimate and MLE agree with
each other. On the other hand, for the incorrect bound-
ary information, the CRMLE recognizes the incorrect-
ness and finds a good balance point between the mean
estimate and MLE. If the boundaries are severely in-
complete and incorrect, the mean estimate may even
have larger 2-norm differences with respect to the true
phantom than that of the MLE. The CRMLE can still
outperform the MLE and the mean estimate. For in-
stance, if the boundaries are so incomplete that there
are only a half circle available in Figure 11, the mean
estimate will lose the other half part of an ellipse.

Fig. 11. The incomplete boundary information is
shown.
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Fig. 12 The CRMLE-EM reconstruction is dis-
played with penalty parameter 0.0003 and 15 itera-
tions.

Fig. 13 Test phantom 2 is shown.

However, the CRMLE will make up the lost part as in
Figure 12. The parameter, a = 0.0003, in Figure 12
is chosen because it minimizes both the GCV and 2-
norm difference curves. The distinguished capability in
extracting the useful portion of the severely incomplete
and incorrect boundary information has been observed
in many other experiments for CRMLE, which are not
shown in this paper for succinctness. To see the above
phenomena in a higher resolution, the number of boxes
is raised to Nb * Nb = 128 * 128 and the number of de-
tectors increases to Nd = 128. We also illustrate this in
a different test phantom as in Figure 13. An extreme
case is that we may have incomplete boundaries that
have holes as in Figure 14. The boundaries may be in-
correctly located as well. The mean estimate is quite
far away from the test phantom 2 in Figure 15. For the
parameter, a = 0.0005, that minimize the 2-norm
differences, the reconstruction of CRMLE is shown in
Figure 15. The CRMLE can even fill up the holes
when the penalty parameter is small enough, say a
= 0.0002. In any case, the CRMLE is quite robust to
the misspecification and misalignment of boundaries.
If the boundaries are complete and correct, then the
mean estimate is a proper estimate. But if there is any
doubt about the specification and alignment of
boundaries, one shall use the CRMLE to reduce the

197

Fig. 14 The incomplete boundary information is
displayed.

Fig. 15 The CRMLE-EM reconstruction is dis-
played with penalty parameter 0.0005 and 10 itera-
tions.

effects of misspecification and misalignment.

5. CONCLUSIONS AND FUTURE
WORKS

It has been shown in this study that the proposed
CRMLE may take advantage of incomplete or incor-
rect boundary information effectively. By introducing
the penalty parameters, one can do the dedicatory bal-
ance between the likelihood function and local
smoothness within boundaries. By the modified EM
algorithm derived, the computation speed and cost are
of the same order as the MLE-EM. This makes the
CRMLE-EM computationally feasible. Through either
human interactions or the generalized cross-validation
method, we can choose a suitable penalty parameter to
do the fine tune-ups. The Monte Carlo studies demon-
strate the improvements of the CRMLE over the MLE.
While the simulation results have confirmed that the
CRMLE is a very promising approach, further studies
are definitely required to make this scheme clinically
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applicable. Some important topics are how to register 
the boundary information from other imaging modali- 
ties on a PET, how to estimate the boundary if no other 
imaging modality is available, how to select penalty 
parameter more efficiently, etc. In addition, we would 
like to apply the proposed CRMLE algorithm to the 
real PET images as the next step. 
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applicable. Some important topics are how to register
the boundary information from other imaging modali-
ties on a PET, how to estimate the boundary if no other
imaging modality is available, how to select penalty
parameter more efficiently, etc. In addition, we would
like to apply the proposed CRMLE algorithm to the
real PET images as the next step.
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