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Abstract

Ultrasound images are inherently difficult to analyze due to their echo texture, speckle noise and weak edges. Taking

into account these characteristics, we present a new region-based approach for ultrasound image segmentation. It is

composed of two primary algorithms, discrete region competition and weak edge enhancement. The discrete region

competition features four techniques, region competition, statistical modeling of speckle, early vision modeling, and

discrete concepts. In addition, to prevent regions from leaking out of the desired area across weak edges, edges located

on the slowly varying slope are enhanced according to their position on the slope and the length of the slope. This new

approach has been implemented and verified on clinical ultrasound images.
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1. Introduction

Region-based techniques are frequently used

for image segmentation. The basic idea of most

region-based approaches is to connect adjacent

pixels with similar characteristics according to
some user-specified criteria. Specifically, the basic

region-based approach is composed of two essen-

tial components. One is a mechanism to gather

adjacent pixels to form regions, the other is a cri-

terion to determine the set of pixels that form a

region. The standard techniques are region grow-

ing and spilt-and-merge. Typical criteria are the

gray-level difference of two adjacent pixels or the

Euclidean distance between the feature vectors

associated with two adjacent regions.

Even though region-based approaches have

been well studied and successfully applied to those

images of good image quality, classical techniques

can easily fail in segmentation of ultrasound im-
ages due to three inherent problems in these im-

ages. The first problem is the ‘‘echo texture’’,

which results from different transmission speeds in

different media. Secondly, coherent interference of

backscattered echoes produce speckle noise. The

third one is the weak edge on the desired bound-

ary, which is caused by artifacts or by similar

acoustic properties of adjacent tissues. While prob-
lems of texture and speckle noise may form false

edges, weak edges may lead to missing edges along

the desired boundary.
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To cope with the first two problems, we propose

a new region-based approach, termed ‘‘discrete

region competition’’, for ultrasound image segmen-

tation. Region competition was originally pro-

posed by Zhu and Yuille (1996), which is basically

a region-based method that considers a global
energy combining the log-likelihood term and the

penalty term of arc length. This approach models

all regions and backgrounds by log-likelihoods.

The parameters of the log-likelihoods in every re-

gion are estimated by the maximum likelihood

estimates. The regions then grow along the steep-

est descent direction of the global energy function

by the likelihood ratio tests of regions and back-
grounds. When regions meet, pixels at the

boundary move according to the comparisons of

log-likelihoods with the parameters estimated by

the maximum log-likelihood approaches, that is,

according to likelihood ratio tests.

Region competition has been shown to be ef-

fective in many image segmentation problems. Zhu

et al. (1998) discussed the possible extension of this
technique to color and texture segmentation with

the modeling of texture. In order to conquer the

interference of the tissue-related texture and the

speckle noise in ultrasound images, we propose a

discrete region competition approach combining

the advantages of region competition with the

statistical modeling of speckle, early vision model,

and the discrete concept for ultrasound image
segmentation. The statistical modeling is to ac-

count more accurately for the statistical properties

of speckle noise in ultrasound images. To do so,

we employ the Rayleigh distribution or its trans-

formation (Burckhardt, 1978) rather than the

Gaussian distribution.

Early vision model generates information on

edges between different texture in an ultrasound
image (Chen and Lin, 1997; Lin et al., 1997; Chen

et al., 1999; Chen et al., 2001). By mimicking hu-

man visual perception, we have shown that this

model highlights edge information while sup-

pressing speckle. The advantage of using the early

vision model over the conventional edge detectors

is that it can not only identify the edges between

two uniform regions with different gray levels but
also those between two regions with different tex-

ture.

The discrete concept was first proposed for the

snake model (Chen et al., 1999) to overcome the

local minima resulting from texture, speckle and

artifacts. The idea is to move the boundary points

of each region over the peaks on the distance map

generated by the early vision model. The rationale
is two-fold. One is that it promises a more accurate

boundary for each region since the peaks of dis-

tance map provide correct positions of edges. The

other is that it makes region competition more

immune to noise.

In order to alleviate the third problem of weak

edges, an enhancement scheme is proposed. To

prevent a region from leaking out of the desired
area, each weak edge located on the slowly varying

slope is enhanced according to their position on

the slope and the length of the slope. The idea is to

amplify the edge information of the desired posi-

tion on the slow varying slopes such that these

edges may exert a strong enough force to catch the

boundary of a region.

This paper is organized as follows. The early
vision model to be used in the discrete region

competition is first described in Section 2. The

proposed discrete region competition is presented

in Section 3. The weak edge enhancement tech-

nique is proposed in Section 4. Empirical results

and discussions are provided in Section 5. Con-

clusions are given in Section 6.

2. The early vision model

At least three types of edges may be found in an

ultrasound image. One is the edge formed by two

regions of different gray levels. Another is the edge

between two different texture. The other is the

hybrid of the first two types. Detection of the first
type of edges has been studied extensively (Russ,

1992). On the other hand, texture image segmen-

tation is still far from practical, especially for

empirical images, though it has also been studied

with great effort. Recently, texture image segmen-

tation based on early vision models has received

wide attention because of the growing under-

standing of human visual perception and current
computing power. Much research on texture image

segmentation based on early vision models have
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been carried out in literature (Tan, 1995; Malik

and Perona, 1990; Jain and Farrokhnia, 1991; Van

Hulle and Tollenaere, 1993; Bovik et al., 1990;

Dunn et al., 1994; Hui et al., 1994; Zhu and Yuille,

1996; Zhu et al., 1998). The general idea of early

vision model approaches is to perform segmenta-
tion on the neuroimages, the intermediate repre-

sentation obtained by convolving the image with

the point spread functions (PSFs) that mimic the

neurons in the V1 cells of the brain. The typical

PSFs used are a bank of Gabor functions.

Since the texture structure of an ultrasound

image is much more complex than that considered

in most previous works and none of the algorithm
in these works was designed for ultrasound im-

ages, we have recently proposed a new early vi-

sion model (Chen and Lin, 1997; Lin et al., 1997;

Chen et al., 1999; Chen et al., 2001) for ultra-

sound image segmentation. Previous vision mod-

els mostly apply the Gabor functions (or some

other functions closely simulating the receptive

fields of V1 cells) to the entire image. In our
model, the whole image is decomposed into

overlapped blocks of subimages. Each subimage

is convolved with N Gabor functions with differ-

ent central frequencies and bandwidths. By half-

wave rectifying each convolved subimage which

generates one positive subimage and one negative

subimage, two values can be obtained by sum-

ming up all pixel values in the positive and neg-
ative subimages, respectively. As a result, each

block of subimage can be associated with a fea-

ture vector computed from N convolved sub-

images. Then the distance map for the image is

attained by assigning the length of the feature

vector for each block. A more detailed description

and numerical comparisons of edge detection in

ultrasound images for this early vision model can
be found in other papers (Lin et al., 1997; Chen

et al., 1999; Chen et al., 2001).

The distance map highlights not only the edge

of two different texture, but also that of two re-

gions with different gray levels. For instance, the

distance map of the ultrasound image in Fig. 1 is

shown in Fig. 2. It is observed that the edges are

highlighted with high intensities in Fig. 2. How-
ever, it is also noted that some desired edges

are invisible. Those parts are considered as weak

edges, which require further amplification to form
barriers for region competition.

3. Discrete region competition

Region competition was originally proposed by

Zhu and Yuille (1996). It unifies the perspectives of

the snake and balloon model (Kass et al., 1987;
Cohen, 1991), region growing, region splitting,

region merging, energy models, Bayes models, and

the minimum description length principle. The

global energy function employed in their algorithm

is based on the log-likelihoods and a penalty term

of arc length. The movement of boundary pixels is

controlled by the steepest descent direction of the

Fig. 1. An ultrasound image with the object of interest in the

middle.

Fig. 2. The distance map of the image in Fig. 1.
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global energy function, which is equivalent to

performing comparisons by likelihood ratio tests.

By combining the advantages of the early vision

model, the discrete concept, the statistical model-

ing of speckle noise and the region competition,

the discrete region competition approach is pro-
posed to alleviate the difficulties of segmentation

caused by the texture and the speckle noise. Be-

sides, a weak edge enhancement technique, which

will be presented in the next section, is also in-

corporated into the discrete region competition

algorithm to resolve the problems of weak edges.

The proposed discrete region competition ap-

proach is composed of five major parts as de-
scribed in the followings.

3.1. Parameter estimation by the maximum likeli-

hood estimate

Suppose that the whole image R, including the

background, is partitioned intoM disjoint regions,

R ¼ [Ri, Ri \ Rj ¼ ;, i ¼ 1, 2, 3,. . ., M. Similar to
Eq. (7) in Zhu and Yuille (1996), the energy

function is considered to be

EðC; frigÞ ¼
XM
i¼1

u
2

I
oRi

ds
�

	 log P ðRijriÞ
�
; ð1Þ

where Ci ¼ oRi is the boundary of Ri, C ¼ [Ci is the

total boundaries, log P ðRijriÞ is the log-likelihood
of the pixel intensities in region Ri with parameter

ri and u > 0 is a weighting factor. The weighting
factor is set to equalize the scales of the log-likeli-

hood and the arc length terms in this study.
From Eq. (1), it is obvious that selecting an

appropriate probability model to correctly de-

scribe the characteristics of each region is an im-

portant step for the proposed algorithm. Since the

speckle is the major feature in ultrasound images,

it is reasonable to choose the probability model

that can represent the distribution of the speckle.

The following definition of speckle in quoted
from the book of Goodman (1985, p. 347) on

statistical optics.

When images are formed by use of highly co-

herent light produced by a laser on an object

composed of surfaces that are rough on the

scale of an optical wavelength, they are found

to have a granular appearance. These chaotic

and unordered patterns have come to be

known as speckle.

The noise on the ultrasound images are of the

same phenomena. Since the speckle noise come

from scatters smaller than the sample volume and

one sample volume contains many scatterers, the

signal received by a transducer is a superimposi-

tion of all scatterings received. Every reflected

signal from a scatter has a different amplitude and

phase angle. It is modeled as a random walk in the
complex plane constituted by the axes of ampli-

tude and phase angle. By the central limit theorem,

the joint distribution of the amplitude and phase

angle of the sum of scattering waves can be ap-

proximated by a Gaussian distribution in the

complex plane when the number of scatters is

large. Thus the resulting amplitude of the super-

imposed scatterings can be modeled by a Rayleigh
distribution. The detail discussion can be found in

Burckhardt (1978) or Goodman (1985).

Assume there are ni pixels inside one region Ri,

and the gray level of every pixel Ij in this region
is independently and identically distributed as a

Rayleigh distribution with a parameter ri > 0. The
probability density function of Ij is

P ðIjjriÞ ¼
Ij
r2i
exp

	I2j
2r2i

 !
: ð2Þ

The likelihood of this region is

P ðRijriÞ ¼
Yni
j¼1

PðIjjriÞ ¼
Yni
j¼1

Ij
r2i
exp

	I2j
2r2i

 !
: ð3Þ

The maximum likelihood estimate (MLE) of ri of
this region turns out to be

r̂ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPni
j¼1 I

2
j

2ni

s
: ð4Þ

If the gray level of an ultrasound image is obtained
after a logarithmic compression transformation of

the reflected wave (Kotropoulos and Pitas, 1992;

Kaplan and Ma, 1994; Dutt and Greenleaf, 1996),

the model of the log-compressed gray level Xj in

the region Ri becomes
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Xj ¼ D ln Ij þ G; j ¼ 1; 2; . . . ; ni; ð5Þ

where Ij is the input to the compression block, Xj

is the output of the compression block, D is a

parameter of the compressor which represents
the dynamic range of input, and G is the linear

gain of the compressor. Through the transfor-

mation of random variables (Dutt and Greenleaf,

1996, p. 804–805), the resulting distribution for

Xj is

pðXjÞ ¼
1

k
expf	gj 	 expð	gjÞg; ð6Þ

where gj ¼ ðq 	 XjÞ=k, q ¼ Dðlnð2r2ÞÞ=2þ G, and
k ¼ D=2. The likelihood is the product of PðXjÞ.
By the invariance property of the MLE, the MLE

for ri in the transformed model is the same as that

in Eq. (4) with the replacement of Ij by eðXj	GÞ=D

when D and G are known. When D and G are

unknown, the MLE for ðri;D;GÞ are obtained by
solving the corresponding score equations. For
simplicity, the Rayleigh distribution is used in our

simulation and empirical studies. Therefore, the

MLE of the parameter ri of the Rayleigh distri-

bution would be r̂ri as given Eq. (4) for the ith

region Ri.

3.2. Movement along the steepest descent direction

After ri is estimated, the direction of movement

is searched along the steepest descent direction.

The motion equation of each point ~vv ¼ ðx; yÞ on
the boundary oR is found by the variational tech-
nique of the continuous energy function,

d~vv
dt

¼ 	 dEðC; frkgÞ
d~vv

¼
X
k2Qð~vvÞ

n
	 u
2

jkð~vvÞ þ log P ðIð~vvÞjrkÞ
o
~nnkð~vvÞ; ð7Þ

where Qð~vvÞ ¼ fkj~vv 2 Ckg is the collection of regions
that share the boundary point ~vv, jkð~vvÞ ¼ ð _xx€yy	
€xx _yyÞ=ð _xx2 þ _yy2Þ3=2 is the curvature of Ck at

~vv; ~nnk ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_yy2 þ _xx2

p _yy
	 _xx

� �
is the unit normal vec-

tor at ~vv, and log P ðIð~vvÞjrkÞ is the log-likelihood of
the intensity at ~vv in region k. The discrete ap-
proximation of the steepest descent direction in

Eq. (7) is used as the movement direction.

3.3. Growing or movement by the likelihood ratio

tests

If ~vv is in the boundary of a region and the
background, then Eq. (7) becomes

d~vv
dt

¼ 	 u
2
jð~vvÞ~nnð~vvÞ þ ðlog PðIð~vvÞjriÞ 	 log P0Þ~nnð~vvÞ: ð8Þ

Here, the background is modeled as a uniform

distribution and P0 is the uniform probability
density function over the range of intensities, like

½0; 255�. This is actually a likelihood ratio test. If
the intensity Ið~vvÞ has a higher probability in region i
than that in the background, the point ~vv expands
and the region grows at that point. Otherwise, the

region shrinks at that point. That is, the region

competes with the background.

If ~vv is on the common boundary of region be-
tween Ri and Rj, then ~nni ¼ 	~nnj, and ji~nni ¼ jj~nnj.
The motion equation for~vv becomes

d~vv
dt

¼ 	ujið~vvÞ~nnið~vvÞ þ ðlog P ðIð~vvÞjr̂riÞ

	 log P ðIð~vvÞjr̂rjÞÞ~nnið~vvÞ: ð9Þ

For the Rayleigh distribution, it is

d~vv
dt

¼ 	ujið~vvÞ~nnið~vvÞ

þ 2 log
r̂rj

r̂ri

 !2
4 	 Ið~vvÞ 	

1

2r̂r2i

0
@ 	 1

2r̂r2j

1
A
3
5~nnið~vvÞ:

ð10Þ
The second term in Eq. (9) is exactly a likelihood

ratio test. If the intensity Ið~vvÞ is more likely be-
longing to region i according to the likelihood
ratio test, then ~vv moves along ~nni, and the region i
grows at that point. Otherwise, the region j grows

at that point. That is, the regions compete with

each other when they meet together. Similarly,

when three or more regions share the same bound-

ary point, the competition decides the movement

of that boundary point.

3.4. Capture of texture boundary by the early vision

model

Basically, the first three parts mentioned above

follow the spirit of Zhu and Yuille’s region
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competition algorithm, except that the MLE of the

parameter ri of the Rayleigh distribution rather

than the normal distribution is employed, which

accounts for speckle noise more accurately. Since

region growing (the major mechanism in region

competition) is primarily based on the information
offered by each single region, it is easily trapped by

the false edges given by the noise or the micro

patterns of texture. Therefore, we propose to use

the distance map by the early vision model to

guide the boundary of each region toward the

desired edges. Since the distance map is derived

based on an early vision model, it has the potential

to identify boundaries for different texture as well
for regions with different gray levels. Practically,

the desired edges will be located at the peak points

of a distance map. One may add the magnitude of

a distance map as a term in the energy function.

However, this approach does not guarantee that

the boundary of a region will coincide with the

desired edges since the final boundary of a region

is determined by all energy terms, not only by the
magnitude of a distance map. In order to ensure

the boundary of a region to agree with the desired

edges, the discrete concept is introduced into the

region competition algorithm as follows.

3.5. Moving along the steepest descent direction

discretely

Rather than adding the magnitude of a distance

map into the energy function, the discrete concept

suggests that we move each point of a region

boundary only over the peaks of the distance map

along the steepest descent direction. That is. the

movement is discrete in contrast to the continuous

movement with which all points along the steepest

descent direction will be considered. The advan-
tages of applying the discrete concept are two-fold.

One is that the final boundary of a region is ex-

pected to have a much better coincidence with the

desired edges compared with that obtained by the

continuous movement or by adding the magnitude

of a distance map to the energy function. It is

because once region competition comes to a steady

state, every boundary point must be on the correct
position of an edge. The other is that it has a better

chance to escape from the local minima on the

false edges given by the speckle and the micro

patterns of texture. The reason is the searching

space for the minimal energy state is much smaller

and more concise compared to that employed by

the conventional approaches.

4. Weak edge enhancement

The discrete region competition proposed in

this paper is expected to be more immune to the

noise and the false edges caused by speckle and

texture. Also it is more likely for the boundary of

each region to be coincident with the desired
edges. However, when the desired edges are weak

in the sense that the edges are on slowly varying

slopes, the discrete region competition approach

may fail to catch these edges and the moving

points may easily stretch out from weak edges. To

solve this problem, in this study we propose a

weighting parameter for weak edge enhancement

to be incorporated in the discrete region com-
petition algorithm. By multiplying the weighting

parameter, l, to the likelihood function of back-

ground, the log-likelihood of the background in-

creases and the boundary point is more inclined to

stay at the same position or shrink back. Thus the

growing force at weak edges is reduced and the

boundary is able to stop on weak edges.

The weighting parameter, l, is a function of the
position of the boundary point on the slope and

the length of the slope. Suppose that the desired

edge position is on the top of a slope. Then, along

the direction of ~nnð~vvÞ or 	~nnð~vvÞ, two numbers, l1 and
l2 are obtained by counting the number of the
pixels from ~vv along the nondecreasing intensity
direction and nonincreasing intensity directions,

respectively. The maximum searching range in
each direction is set to be r pixels. Since 16 l1þ
16 r þ 1, and 16 l2 þ 16 r þ 1, 1=ðr þ 1Þ6
ðl1 þ l2 þ 2Þ=2ðr þ 1Þ6 1 and 1=2ðl1 þ l2 þ 1Þ6
ðl1 þ 1Þ=2ðl1 þ l2 þ 1Þ6 1=2. The longer the slope
is, the bigger ðl1 þ l2 þ 2Þ=2ðr þ 1Þ is. The smaller
l1 is or the larger l2 is, the more the point is to the
top of the slope, and the bigger cosðððl1 þ 1ÞpÞ=
ð2ðl1 þ l2 þ 1ÞÞÞ is. As the boundary is aimed to
stop around the top in a long slope, the following

weighting parameter is proposed:
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l ¼ ðl1 þ l2 þ 2Þ
2ðr þ 1Þ cos

ðl1 þ 1Þp
2ðl1 þ l2 þ 1Þ

� ��
þ 1
�c

ð11Þ

for a power parameter c. Thus, and the edge at

each ~vv is enhanced adaptively according to its
position and the length of the slope that it is on.

The power c is determined empirically in this

study.

The weighting parameter is incorporated into

the discrete region competition algorithm to pro-

vide a barrier force to hinder a region from ex-
panding across over the desired weak edges. As an

example, consider the case that a region competes

with the background. Assume the distribution of

background is uniformly distributed over ½0; 255�.
The movement in Eq. (8) for a point~vv in a region
is modified to be the sum of the following two

terms,

d~vv
dt

¼ ðc1 þ c2Þ~nnð~vvÞ; ð12Þ

where

c1 ¼ 	 u
2

j;

c2 ¼ log PðIð~vvÞjr̂riÞ 	 log
l
255

� �
:

If c1 þ c2 > 0, ~vv moves toward the direction of
normal vector~nn and inflates the region. Otherwise,
~vv shrinks the region along the opposite direction of
~nn. When a desired weak is encountered, l becomes
relatively larger. This makes c2 smaller and the
inflation force is reduced thereof.

5. Experimental results and discussions

The proposed discrete region competition ap-

proach and the weak edge enhancement technique

are applied to clinical ultrasound images. As an

example, Figs. 3 and 4 illustrate the segmentation

results using the conventional region growing al-

gorithm with different threshold levels for the ul-

trasound image shown in Fig. 1. If the threshold

level is high, the region stretches out through the
weak edges as seen on the both side of the region

of interest (ROI). If the threshold level is low, then

the segmented region shrinks with a lot of holes

inside.

To see the effect of the early vision model, dis-

crete concept and the weak edge enhancement,

various experiments have been carried out on the
same ultrasound image given in Fig. 1. The goal is

to segment out the triangle-like region in the cen-

tral area of Fig. 1. Suppose Zhu and Yuille’s re-

gion competition is employed. One way to obtain

this region is to use the one-region mode with only

one region grows that competes with the back-

ground. However, this way may get a result similar

to Fig. 3. In other words, the only region may leak
out the desired region though the weak edges at

the left and right sides of the ROI. In order to

block the growing of the region at the weak edges,

Fig. 4. Region growing by intensity levels with a low threshold.

Fig. 3. Region growing by intensity levels with a high thresh-

old.
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two-region mode needs to be employed and the

initial seed of the left region should be placed close

to the left weak edge. Fig. 5 gives the segmen-

tation result using two-region mode by the region

competition. Rayleigh distribution is assumed in

this experiment. It is clear that the boundaries of
segmented regions are not close to the desired

boundaries.

If the discrete concept is combined with the

region competition in such a way that only the

peaks in the original image (Fig. 1) are considered

in the searching process for next pixel position to

move, we obtain the segmentation result in Fig. 6.

Note that two-region mode is still required to
hinder the ROI from stretching out of the left

weak edge. Comparing Figs. 5 and 6, one may find

that the boundary of the right region in Fig. 6 has

a better coincidence with the texture boundaries

for strong edges than that in Fig. 5. However, the

right region in Fig. 6 leaks out of the right weak

edge due to the local peaks caused by the noise.

When the discrete region competition is em-
ployed, i.e. it includes region competition with

Rayleigh distribution, discrete concept and early

vision model, we obtain the segmentation result in

Fig. 7. The edges are highlighted in the peak points

of the distance map as shown in Fig. 2. Moreover,

the noise has been drastically suppressed. Note

that two-region mode is also required to prevent

the right region from growing out of the weak
edges. Like in Fig. 6, the boundary of the right

Fig. 5. The segmentation result obtained by using the region

competition in two-region mode under the assumption of

Rayleigh distribution.

Fig. 6. The segmentation result obtained by combing region

competition and discrete concept in two-region mode.

Fig. 7. The segmentation result obtained by using the discrete

region competition, including the early vision model and the

discrete concept, in two-region mode.

Fig. 8. The segmentation result obtained by using the discrete

region competition incorporating weak edge enhancement in

one-region mode.
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Fig. 9. The comparison studies of seven ultrasound images. The left column contains the ideal segmentation results by experts and the

right column contains the segmentation results by using the discrete region competition incorporating weak edge enhancement in one-

region mode.
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region derived by the discrete region competition
coincides with the texture boundary better than

that derived by the region competition. But unlike

in Fig. 6, this experiment successfully catches the

right weak edge.

When weak edge enhancement is incorporated

into the discrete region competition, the segmen-

tation result is presented in Fig. 8. Plausibly, rea-

sonable boundaries have been found simply with
one-region mode. These encouraging results have

shown that the proposed discrete region competi-

tion and weak edge enhancement techniques are
very effective for ultrasound image segmentation.

And combining the discrete concept and the dis-

tance map may dramatically increase the accuracy

in locating the desired edges.

Comparison studies for seven ultrasound im-

ages are performed and reported in Fig. 9. The left

row contains the ideal segmentation by experts,

while the right row contains the segmentation re-
sults by using the discrete region competition in-

corporating weak edge enhancement in one-region

Fig. 9 (continued)
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mode. The mean and the standard deviation of the

distances from the derived boundary in the right

row of Fig. 9 to the desired boundary in the left

row of Fig. 9 are reported in Table 1 with the unit

of pixel. The automatic segmentation results of the
new method are close to the ideal segmentation.

6. Conclusions

Ultrasound image segmentation is a nontrivial

task due to the intrinsic speckle noise and the

tissue-related texture. In this paper, we present a
novel segmentation algorithm for ultrasound im-

ages with discrete region competition and weak

edge enhancement. The discrete region competi-

tion has four distinctive features. First of all, it

takes advantage of region competition originally

proposed by Zhu and Yuille (1996) as the basic

mechanism for region deformation. Secondly, it

models speckle noise statistically. Thirdly, it adopts
the distance map derived from our early vision

model to catch texture boundaries as well as the

boundaries between regions with different gray

levels. Lastly, it combines the discrete concept to

ensure that the boundaries of each region coincide

with the desired edges. In addition, to catch the

weak edges which are usually missed by conven-

tional approaches, a new weak edge enhancement
technique has also been proposed in this paper.

Putting these all together, we have shown that

our implementation successfully segments clinical

ultrasound images.
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