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Explore Biological Pathways from Noisy Array
Data by Directed Acyclic Boolean Networks
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ABSTRACT

We consider the structure of directed acyclic Boolean (DAB) networks as a tool for explor-
ing biological pathways. In a DAB network, the basic objects are binary elements and their
Boolean duals. A DAB is characterized by two kinds of pairwise relations: similarity and
prerequisite. The latter is a partial order relation, namely, the on-status of one element is
necessary for the on-status of another element. A DAB network is uniquely determined by
the state space of its elements. We arrange samples from the state space of a DAB network
in a binary array and introduce a random mechanism of measurement error. Our inference
strategy consists of two stages. First, we consider each pair of elements and try to identify
their most likely relation. In the meantime, we assign a score, s-p-score, to this relation.
Second, we rank the s-p-scores obtained from the first stage. We expect that relations with
smaller s-p-scores are more likely to be true, and those with larger s-p-scores are more
likely to be false. The key idea is the definition of s-scores (referring to similarity), p-scores
(referring to prerequisite), and s-p-scores. As with classical statistical tests, control of false
negatives and false positives are our primary concerns. We illustrate the method by a sim-
ulated example, the classical arginine biosynthetic pathway, and show some exploratory
results on a published microarray expression dataset of yeast Saccharomyces cerevisiae ob-
tained from experiments with activation and genetic perturbation of the pheromone response
MAPK pathway.
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1. INTRODUCTION

One great challenge of postgenomic research is to identify complex biological networks and
pathways from genomewide data such as DNA sequences and expression profiles. This includes

metabolic pathways, protein–protein interaction networks, gene regulatory pathways, etc. Along with bio-
logical methods such as phylogenetic profile and Rosetta Stone (see Eisenberg et al. [2000] and McGuire
and Church [2000]), computational methods have been developed as powerful data-mining tools in the
study of genomics.
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Clustering is one such important technique to group genes and samples from microarray data; see Eisen
et al. (1998), Ben-Dor et al. (1999), Alon et al. (1999). A central component of a clustering algorithm is
the definition of similarity scores, either from a biological perspective or from a statistical perspective. We
note that the relation of similarity between two biological elements such as proteins or genes is symmetric
in nature. On the other hand, a biological process may include a cascade of reactions to environmental
factors and regulation of protein syntheses. Thus, concepts other than similarity are necessary for a complete
description of pathways.

Data type is another consideration in the modeling of networks. In this article, we consider binary vari-
ables because we can always discretize continuous variables. In the presence of noise, careful discretization
can even denoise to some degree. One such example can be found in Xing and Karp (2001). The use of
Boolean networks has a long history in the literature. Kauffman (1977, 1979) considered a dynamic version
of Boolean networks. A review of models of genetic regulatory systems including Boolean networks can
be found in De Jong (2002). Based on the structure of Boolean networks, we introduce a new model for
measurement error and propose a simple technique to infer pairwise relations between elements from noisy
array data.

We note that the Bayesian networks model is a much more sophisticated and complete model to describe
biological pathways than the method proposed in this article. For example, variables in a Bayesian networks
model can be either discrete or continuous. Bayesian networks is a structure that contains directed relations
among elements. It has been extensively studied in the last two decades; see Pearl (1988) and Jensen (1996).
Its structure is characterized by two components. The first component is a directed acyclic graph whose
vertices correspond to random variables. The second component describes a conditional distribution for
each variable, given its parents in the graph. Murphy and Mian (1999) and Friedman et al. (2000) applied
Bayesian network models to analyze microarray expression data. The family of Bayesian networks is fairly
large, and the number of DAGs is superexponential. Although some algorithms searching for Bayesian
networks have been developed (see Heckerman et al. [1995] and Spirtes et al. [2000b]), the learning of
Bayesian networks is a challenging task without a priori knowledge. Also, to achieve high accuracy of
estimation, sample sizes of several hundred are required even for relatively sparse graphs; see Spirtes et al.
(2000a). The simple model considered in this article takes some aspects of Bayesian networks and serves
as a tool of exploratory data analysis for array data.

Specifically, we consider the structure of directed acyclic Boolean (DAB) networks as a tool for exploring
biological pathways. In a DAB networks model, the basic objects are binary elements and their Boolean
duals. A DAB is characterized by two kinds of pairwise relations: similarity and prerequisite. The former
represents a pair of elements with identical on–off states. The latter is a partial order relation, namely,
the on-status of one element is prerequisite for the on-status of another element. A DAB networks model
is uniquely determined by its state space: all possible on–off states subject to the pairwise relations. We
arrange samples from the state space of a DAB network in a binary array and then introduce a random
mechanism of measurement error. This results in a noisy array. Our goal is to reconstruct the DAB networks
from the noisy array data.

Our inference strategy consists of two stages. First, we consider each pair of elements and try to identify
their most likely relation. In the meantime, we assign a score, s-p-score, to this relation. Second, we rank
the s-p-scores obtained from the first stage. We expect that those relations with smaller s-p-scores are more
likely to be true, and those with larger s-p-scores are more likely to be false. The key idea is the definition
of s-scores (referring to similarity), p-scores (referring to prerequisite), and s-p-scores (by model selec-
tion). As with classical statistical tests, control of false negatives and positives are our primary concerns.

The s-p-scoring method is one kind of exploratory data analysis and focuses on pairwise relations. After
the ranking of pairwise relations, experts’ knowledge may be incorporated. Depending on the data, we
expect to reconstruct all or partial substructures of a network. If we set an upper bound to the number of
E-M iterations involved, the computational complexity of the procedure is O(m2 log m), where m is the
number of elements in a network.

The rest of the paper is organized as follows. In Section 2, we describe the structure of the model.
In Section 3, we explain the s-p-scoring method. In Section 4, we illustrate the method by a simulated
example, the classical arginine biosynthetic pathway, and show some exploratory results on the yeast
Saccharomyces cerevisiae pheromone response MAPK pathway using an expression dataset obtained from
experiments with activation and genetic perturbation. In Section 5, we discuss some relevant issues.
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2. THE MODEL

The structure of directed acyclic Boolean (DAB) networks

Suppose we are concerned with m elements, G1, G2, . . . , Gm, each taking two states: on and off. These
elements are abstracts of biological objects such as genes, mRNAs, proteins, environmental conditions, or
a mixture of them. If an element is measured on a continuous scale or has more than two expression levels,
then we need to discretize it and encode it by binary variables. We will come back to this issue later. The
theory of directed graphs is helpful for the description of our model; we refer readers to Brightwell (1997)
for relevant results on this subject. We generate a graph with 2m vertices or nodes, G1, G2, . . . , Gm, and
their Boolean duals Ḡ1, Ḡ2, . . . , Ḡm, representing on-and-off states of the m elements, and this is referred
to as the ground-set. We refer to a node A and its dual Ā as a Boolean pair.

We define a prerequisite relation between a pairs of elements A and B as follows: A is prerequisite for
B if the on-status of A is necessary for the on-status of B, and we denote it by A ≺ B. The prerequisite
relation is a partial order. It is transitive on the ground-set, namely, A ≺ C and C ≺ B implies A ≺ B.
Also it is irreflexive in the sense that we never have A ≺ Ā. In addition, we assume that the dual of each
partial order relation is also true; i.e., B̄ ≺ Ā is true if and only A ≺ B is true. Similarly, we have the
following three pairs of dual relations: Ā ≺ B̄ with B ≺ A; A ≺ B̄ with B ≺ Ā; and Ā ≺ B with B̄ ≺ A.
We graphically represent a partial relation A ≺ B by drawing an arrow from the vertex A to B. It is not
economical to include all the arcs in the directed graph due to the transitive property of partial orders. An
ordered pair (A, B) is called a covering pair if there exists no vertex C such that A ≺ C and C ≺ B. Thus,
it suffices to represent all partial orders by arrows between covering pairs, and this is referred to as the
diagram of the directed graph. It is well known that the diagram of a partial order is acyclic. In addition,
no path exists to connect a Boolean pair in the diagram of a DAB because we never have A ≺ Ā.

Another relation between pairs of elements is similarity. Two elements A and B are similar if they are
on and off simultaneously, and this is denoted by A ∼ B. They are negatively similar if they are on and
off in the opposite way, and this is denoted by A ∼ B̄. In the absence of measurement error, it is a trivial
relation. But in practice, the presence of measurement error complicates the situation, and it needs to be
inferred from the data.

We use “—” to connect two similar elements in the diagram. Figure 1 shows a directed acyclic Boolean
network, which has seven elements with one similar and eleven prerequisite relations. Another way to
identify a DAB is to consider the on–off states of its elements. There are in total 27 = 128 states for a
seven-element DAB. Only 13 of these states are compatible with the 12 pairwise relations in the above
example. We enumerate them in Table 1, where “0” and “1” represent “off” and “on,” respectively. It is
a subset of the 128 states. In general, a directed acyclic Boolean network consisting of m elements
corresponds to a unique subset of all 2m states. Even though not every subset of the 2m states corresponds
to a directed acyclic Boolean network, the number of DABs, like the number of DAGs, is superexponential.

Consider n samples generated from a directed acyclic Boolean network; i.e., we sample with replacement
from the state space compatible with the networks. Table 1 shows the compatible states for the above
example. We arrange the data in a matrix (yij ), where i = 1, . . . , n, j = 1, . . . , m, whose entries take

FIG. 1. Diagram of a directed acyclic Boolean network with seven elements and twelve pair relations. Only arrows
between covering pairs are shown.

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2005.12.170&iName=master.img-000.png&w=170&h=131
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Table 1. The Table of States for Directed Acyclic Boolean Network Shown in Fig. 1

Case 1 2 3 4 5 6 7 8 9 10 11 12 13

A 0 1 1 1 1 1 1 1 1 1 1 1 1
B 0 0 1 1 1 1 1 1 0 0 0 0 0
C 0 0 0 1 1 1 1 1 1 1 1 1 1
D 1 1 1 1 0 1 0 0 1 0 1 0 0
E 0 0 1 1 1 1 1 1 0 0 0 0 0
F 0 0 0 0 0 1 1 1 0 0 1 1 1
G 0 0 0 0 0 0 0 1 0 0 0 0 1

Table 2. 2 × 2 Tables for a Pair of Elements
Assuming No Measurement Errora

A / B 0 1

0 m00 m01
1 m10 m11

A / B 0 1

0 q00 q01
1 q10 q11

aThe counts on the left are regarded as being generated from the
multinomial distribution on the right.

Table 3. Count Patterns for the Six Pairwise Relations Assuming
Exhaustive Sampling and No Measurement Error

A ∼ B

A / B 0 1

0 + 0
1 0 +

A ∼ B̄

A / B 0 1

0 0 +
1 + 0

A ≺ B, B̄ ≺ Ā

A / B 0 1

0 + 0
1 + +

Ā ≺ B̄, B ≺ A

A / B 0 1

0 + +
1 0 +

A ≺ B̄, B ≺ Ā

A / B 0 1

0 0 +
1 + +

Ā ≺ B, B̄ ≺ A

A / B 0 1

0 + +
1 + 0

values of either 0 or 1. Table 1 is the transpose of (yij ), and each row corresponds to an element and each
column corresponds to a sample.

Without measurement error, we can reconstruct the directed acyclic Boolean network in Fig. 1 from
Table 1 by identifying all the pairs with prerequisite or similar relations. This is carried out by the following
procedure. For each pair of elements, say, A and B, we count the four incidences of (A, B) being (0, 0),
(0, 1), (1, 0), and (1, 1) from the corresponding columns of (yij ) and arrange them in a 2 × 2 table; see
the left of Table 2. We mark a cell “+” if the count is positive and mark it “0” otherwise. Consequently,
the six relations are characterized by the count patterns in Table 3.

Next, we consider the issue of selection bias. In practice, we sample from all the possible states com-
patible with a directed acyclic Boolean network. In the above example, we have only 13 cases. When m

is large, this number could be large, and possibly only a fraction of them are sampled. Then the issue of
estimableness arises. If we cannot have an exhaustive sample, i.e., some compatible states are missed in
observation, then the count strategy described above may lead to false positive pairwise relations, either
prerequisite or similarity. For example, if case 3 in Table 1 is missed from observations, then the count
strategy indicates C ≺ B, which is not consistent with the truth. Nevertheless, this strategy will not lead
to any false negatives in the absence of measurement error.
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Measurement error

Next we introduce a mechanism of measurement error to the data sampled from a directed acyclic
Boolean network. This results in a more practical model for many biological data, such as expression
levels. We assume that each entry in (yij ) is switched to its opposite value according to a misclassification
probability p, independently with one another; i.e.,

xij =
{
yij with probability 1 − p ,

1 − yij with probability p .

This creates the noisy array (xij ), which are the observations.

Problem and pairwise structure

Our goal is to reconstruct the directed acyclic Boolean network from the array of binary data (xij ). It
is clear that the problem is equivalent to identifying all the pairs of elements with estimable similarity or
prerequisite relations.

3. METHOD

Our inference strategy consists of two stages. First, we consider each pair of elements and try to find
their most likely relation. In the meantime, we assign a score, s-p-score, to this relation. Second, we rank
the s-p-scores obtained from the first stage. We expect that those relations with smaller s-p-scores are more
likely to be true, and those with larger s-p-scores are more likely to be false.

Probabilistic models for 2 by 2 tables

To deal with measurement error, we resort to probabilistic models. Instead of a full model including
every element, we consider pairwise models in the first stage. The count data in the 2 × 2 table on the
left of Table 2 can be thought of as being generated from a multinomial distribution with four cells whose
probabilities are q00, q01, q10, q11, respectively, as shown on the right of Table 2, where q00 + q01 + q10 +
q11 = 1. Then the six types of relations between elements A and B are reformulated as hypotheses on the
probability patterns; see Table 4. Please notice that (q00, q01, q10, q11) depend on both the structure of the
DAB network and the sampling scheme.

Similarly to (yij ), we extract the data in (xij ) for each pair of elements, say, A and B, and arrange
them on the left of Table 5. Now the counts n00, n01, n10, n11 are not generated from the multinomial
(q00, q01, q10, q11), but from another multinomial (r00, r01, r10, r11) as shown on the right of Table 5,
where r00 + r01 + r10 + r11 = 1.

Missing data structure

With measurement error, a part of m00 may leak to the other three cells. We denote the redistributed
counts from m00 to the four cells by m00,00, m00,01, m00,10, m00,11. Analogous notation is defined for m01,

Table 4. The Six Pairwise Relations, Their Corresponding
Probabilistic Hypotheses and s-Scores, p-Scores

Relation Hypothesis Scores

Diagonal A ∼ B q01 = q10 = 0 sA∼B

Similarity Ā ∼ B q00 = q11 = 0 sĀ∼B

Triangular A ≺ B q01 = 0 pA≺B

Prerequisite Ā ≺ B̄ q10 = 0 pĀ≺B̄
A ≺ B̄ q00 = 0 pA≺B̄
Ā ≺ B q11 = 0 pĀ≺B



DIRECTED ACYCLIC BOOLEAN NETWORKS 175

Table 5. The 2 × 2 Count Table for a Pair of
Elements and Their Generating Probabilities

in the Presence of Measurement Error

A / B 0 1

0 n00 n01
1 n10 n11

A / B 0 1

0 r00 r01
1 r10 r11

Table 6. Splitting Counts Caused by
Misclassification Error

A/B 0 1

0 m00,00 m00,01 m01,00 m01,01
m00,10 m00,11 m01,10 m01,11

1 m10,00 m10,01 m11,00 m11,01
m10,10 m10,11 m11,10 m11,11

Table 7. Splitting Probabilities Caused by Misclassification Error

A/B 0 1

0 q00,00 = (1 − p)2q00 q00,01 = p(1 − p) q00 q01,00 = p(1 − p) q01 q01,01 = (1 − p)2 q01
q00,10 = p(1 − p) q00 q00,11 = p2 q00 q01,10 = p2 q01 q01,11 = p(1 − p) q01

1 q10,00 = p(1 − p) q10 q10,01 = p2 q10 q11,00 = p2 q11 q11,01 = p(1 − p) q11
q10,10 = (1 − p)2 q10 q10,11 = p(1 − p) q10 q11,10 = p(1 − p) q11 q11,11 = (1 − p)2 q11

m10, and m11. This splitting pattern is shown in Table 6. Correspondingly, their generating probabilities
(q00, q01, q10, q11) are redistributed as shown in Table 7, where we adopt the notation qij,kl analogous to
mij,kl . The two sets of counts and probabilities are linked as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

nij =
∑

k,l=0,1

mkl,ij ,

rij =
∑

k,l=0,1

qkl,ij ,

(1)

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

mkl =
∑

i,j=0,1

mkl,ij ,

qkl =
∑

i,j=0,1

qkl,ij .

MLE and the E-M algorithm

The log-likelihood of the data is given, up to a constant, by the following

L =
∑

i,j=0,1

nij log rij , (2)
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where the probabilities rij ’s are computed according to (1) and Table 7. Later we define s-scores and
p-scores via maximum likelihood estimates (MLE). Except for a constant, the log-likelihood of the full
data {mij,kl} is given by

∑
i,j,k,l=0,1

mij,kl log qij,kl , (3)

where qij,kl are those splitting probabilities in Table 7.
To estimate the MLE, the celebrated E-M algorithm maximizes the likelihood of full data (3) rather than

that in (2); see Dempster et al. (1977) and McLachlan and Krishnan (1997). In the E-step, we impute the
splitting counts by their conditional expectations calculated at the current value of the parameter by the
formula

E(p,q00,q01,q10,q11)(mij,kl |nkl) = nkl qij,kl∑
i′,j ′=0,1

qi′j ′,kl

, (4)

where i, j, k, l = 0, 1. Under different hypotheses specified in Table 4, one or two probabilities of q00, q01,
q10, and q11 are zero. In the M-step, we update the value of the parameter by maximizing the conditional
expectation of the log-likelihood for the full data; See Li and Lu (2001) for details.

Pairwise scores

We first consider a problem simpler than reconstructing a DAB network: what is the most likely relation
for a pair of elements?

Definition 1. For a pair of elements A and B,

• the s-scores sA∼B and sA∼B̄ are, respectively, the maximum likelihood estimates of p under the diagonal
model: q01 = q10 = 0 and q00 = q11 = 0;

• the p-scores pA≺B , pĀ≺B̄ , pA≺B̄ , and pĀ≺B are, respectively, the maximum likelihood estimates of p

under the triangular model: q01 = 0, q10 = 0, q00 = 0, and q11 = 0; cf. Table 4.

We compute s-scores and p-scores by the E-M algorithm described earlier. The heuristic of the definition
is that we use the MLE p̂ to measure the goodness of fit of each hypothesis: the smaller the score, the
more support to the corresponding hypothesis.

Next we need to choose one score out of the two s-scores and four p-scores for a pair of elements. In
other words, we need to select the hypothesis that is most consistent with the data. This is a problem of
model selection; see Schwarz (1978).

Definition 2. For a pair of elements A and B,

• between the two diagonal models, select the one that achieves the smaller s-score;
• among the four triangular models, select the one that achieves the smallest p-score;
• for the diagonal model corresponding to the smaller s-score and the triangular model corresponding to

the smallest p-score, we compare their corresponding BIC values, namely, the penalized log-likelihoods
as follows:

BIC = − log likelihood + d log n

2
,

where n is the sample size and d is the number of parameters. This number is two for a diagonal model
and is three for a triangular model. We choose the model with the smaller BIC value as the most likely
relation for the pair A and B, and define their s-p-score to be the score corresponding to the most likely
relation.
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Please notice that s-p-score is one of the s-scores and p-scores and BIC values are used only to choose
the hypothesis. It is easy to understand why we select the smallest s-score and p-score. Notice that each
diagonal model is nested in two triangular models. To make the choice between a diagonal and a triangular
model, we need to take into account model complexity. We here adopt the technique of BIC for model
selection.

The basic idea of most powerful statistical tests is to minimize the chance of type II error (false positive)
subject to a constraint on the chance of type I error (false negative); see Lehmann (1986). Even though
the classical theory of hypothesis testing does not directly apply to our situation, its rationale remains our
guide. For each hypothesis in Table 4, we expect that the s-score or p-score has the following property:
it is a good estimate of the parameter p when the hypothesis is true; whereas it is considerably biased
upward when the hypothesis is false.

Accuracy of estimation and control of false negative

We next consider the statistical behavior of the s-scores and p-scores under the null hypothesis. Without
loss of generality, we take the hypothesis q01 = 0, for example. Notice that this is a composite hypothesis.
In general, the maximum likelihood estimate in a regular setting is both consistent and efficient; see Bickel
and Doksum (1977).

Proposition 1. Suppose that the hypothesis A ≺ B, i.e., q01 = 0 holds. Then, except for the singular
point at q00 = q11 = 0, the maximum likelihood estimate of p has the property of asymptotical normality,
i.e.,

√
n [p̂ − p, q̂00 − q00, q̂10 − q10, q̂11 − q11] −→ N(0, I−1) ,

where I is the Fisher information matrix,

I = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E

[
∂2logL

∂p2

]
E

[
∂2logL

∂p∂q00

]
E

[
∂2logL

∂p∂q10

]
E

[
∂2logL

∂p∂q11

]

E

[
∂2logL

∂p∂q00

]
E

[
∂2logL

∂q2
00

]
E

[
∂2logL

∂q00∂q10

]
E

[
∂2logL

∂q00∂q11

]

E

[
∂2logL

∂p∂q10

]
E

[
∂2logL

∂q00∂q10

]
E

[
∂2logL

∂q2
10

]
E

[
∂2logL

∂q10∂q11

]

E

[
∂2logL

∂p∂q11

]
E

[
∂2logL

∂q00∂q11

]
E

[
∂2logL

∂q00∂q10

]
E

[
∂2logL

∂q2
11

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It will take more than 10 pages to write down the expression of I−1. In fact, the computation was carried
out by the symbolic calculation in MAPLE. Here we choose to give only the term corresponding to the
parameter p as follows:

p(1 − p)(3p2q00 + 3p2q11 − p2q10 − 3pq00 − 3pq11 + pq10 + q11 + q00)

n(4p2q2
11 + 4p2q2

00 + 8p2q00q11 − 4pq2
11 − 4pq2

00 − 8q00pq11 + 2q00q11 + q2
11 + q2

00)
. (5)

In Fig. 2, we plot the element of I−1 corresponding to p as a function of q00 and q01 in which p is fixed to
be 0.05. The only singularity point occurs at q10 = 1 and q00 = q11 = q01 = 0. In this case, one element
is house-keeping (on all the time), and the other one is silent (off all the time). By filtering out silent and
house-keeping elements, we can eliminate this kind of singularity for the sake of inference. Consequently,
we can find a bound on the inverse of the Fisher information matrix, and this means that the p-score will
be around p within an order 1/

√
n radius asymptotically.
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FIG. 2. The asymptotic variance of the MLE of p when p = 0.05. One singularity point occurs at q10 = 1 and
q00 = q11 = q01 = 0.

Control of false positives

Next we look at how the p-score pA≺B behaves under the alternatives: q01 > 0 versus the null q01 = 0.
We study the asymptotic bias of the MLE.

Proposition 2. Let the parameters in the true model be (p, q00, q01, q10, q11), where q01 > 0. As
the sample size n → ∞, the MLE (p̃, q̃00, q̃01, q̃10, q̃11) subject to q̃01 = 0 is given by the value that
minimizes the Kullback–Leibler divergence between the null and alternative:

D[{p, q00, q01, q10, q11}||{p̃, q̃00, q̃01 = 0, q̃10, q̃11)}] = D[{rij }||{r̃ij }] =
∑

i,j=0,1

[−rij log r̃ij + rij log rij ],

where {rij } and {r̃ij } are respectively defined by {p, q00, q01, q10, q11} and {p̃, q̃00, q̃01 = 0, q̃10, q̃11} via
(1) and Table 7.

Proof. The concept of Kullback–Leibler divergence can be found in Cover and Thomas (1991). The
proof lies in the connection between likelihood and Kullback–Leibler divergence. When n −→ ∞,
nij /n −→ rij , and maximizing the quantity in (2) becomes maximizing the following:∑

i,j=0,1

n rij log r̃ij ,

over {r̃ij }. This is equivalent to minimizing∑
i,j=0,1

[−rij log r̃ij + rij log rij ] ,

which is D[{rij }||{r̃ij }]. Thus we complete the proof.

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2005.12.170&iName=master.img-001.jpg&w=379&h=286
http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2005.12.170&iName=master.img-001.jpg&w=379&h=286
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FIG. 3. pA≺B − p, where p = 0.05 and q01 = 0.1. It confirms that pA≺B is larger than p when q01 > 0.

We expect that p̃ − p > 0 when q01 > 0. We have confirmed this result numerically. In the range of
0 < p < 0.45, 0 < q01 < 0.5, we set up a mesh and calculate p̃ − p = pA≺B − p. Figure 3 shows the
result when p = 0.05 and q01 = 0.1.

Now we explain why we rather take p̂ than the likelihood ratio as the statistics to test the hypothesis.

Proposition 3. Suppose (p̃, q̃00, q̃01 = 0, q̃10, q̃11) and (p, q00, q01 > 0, q10, q11) are respectively the
null and alternative hypotheses. Denote the significance level by α, and the chance of type II error of the
optimal test by βn, where n is the sample size. Then

lim
α→0

lim
n→∞

1

n
log βn = −D[(p̃, q̃00, q̃01 = 0, q̃10, q̃11)||(p, q00, q01, q10, q11)] .

This result is a direct application of the Stein’s lemma; see Chapter 12 of Cover and Thomas (1991). It says
that the chance of type II error (false positive) is characterized by the Kullback–Leibler divergence between
the two hypotheses. We plot the Kullback–Leibler divergence for the case p = 0.05, q00 = q11 = q10
in Fig. 4. It remains zero until q01 reaches 0.25. This indicates that the likelihood ratio test cannot give
good protection against false positives. In comparison, we plot p̃ − p = pA≺B − p against q01 for the
case p = 0.05, q00 = q11 = q10 in Fig. 5. It can be seen that the score immediately goes up as q01 moves
away from zero. Thus we rather adopt p-scores to play the role of test statistic.

Reconstruction of directed acyclic Boolean networks

The s-p-scores are more meaningful if they are generated from a directed acyclic Boolean network
because we may discover significant pairwise relations by ranking the scores in the ascending order. We
collect those pairwise relations whose s-p-scores are smaller than a threshold and put them in a watch
list. Known biological results are helpful for the determination of threshold. For example, if we know
the relation A ≺ B is true, then those s-p-scores smaller than pA≺B should be in our watch list. Please

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2005.12.170&iName=master.img-003.jpg&w=381&h=299
http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2005.12.170&iName=master.img-003.jpg&w=381&h=299


180 LI AND LU

FIG. 4. The Kullback–Leibler divergence between the full model q01 > 0 and the triangular model q01 = 0
against q01, where p = 0.05, q00 = q11 = q10.

FIG. 5. pA≺B − p against q01, where p = 0.05, q00 = q11 = q10.
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notice that as more pairwise relations are included in the watch list, the more likely we are to observe
incompatible ones. In this case, no DAB network exists to explain all the relations. We here mention one
strategy, namely, the maximum compatibility criterion: choose the maximum threshold value so that the
selected pairwise relations contain no conflict. Next we illustrate the method by some examples.

4. EXAMPLES

Simulated example

For the DAB example consisting of seven elements in Fig. 1, we simulate a data set of 76 samples with
misclassification probability p = 0.05. The data can be arranged in an array similar to that obtained from
microarray. Namely, each row in this array corresponds to an element, and each column corresponds to
a sample. We compute the 21 s-p-scores and sort them in Table 8. For each pair of elements, we show
the counts of ni,j in the last four columns, two s-scores, and four p-scores in the middle. The sorted
s-p-scores and their corresponding hypotheses are shown in the first two columns. The true relations and
false relations (in parentheses) cross each other by only one case.

Arginine biosynthetic pathway

Boolean logic is a useful tool for the study of pathways. We here revisit the analysis of the experiment
concerning the biochemical pathway for the synthesis of the amino acid arginine in Neurospora crassa.
It is a standard example to illustrate the one gene–one enzyme hypothesis; see Russell (1995). The pathway
is shown in Fig. 6. Using genetic crosses and complementation tests, we know the process involves four
genes, which are designated argE+, argF+, argG+, and argH+ in a wild-type cell. The experiments
generated growth pattern of the mutant strains on media supplemented with presumed arginine precursors.
These intermediates are ornithine, citrulline, and argininosuccinate.

Table 8. For the DAB in Fig. 1, We Generate 76 Samples, and Take p = 0.05a

Ranking Hypotheses Counts in cells

Relation s-p-score q01 = q10 = 0 q00 = q11 = 0 q01 = 0 q10 = 0 q00 = 0 q11 = 0 n00 n01 n10 n11

C ≺ G 0.000 0.441 0.250 0.000 0.441 0.250 0.197 23 0 38 15
A ≺ G 0.000 0.441 0.138 0.000 0.441 0.079 0.138 6 0 55 15
A ≺ C 0.017 0.146 0.388 0.017 0.146 0.079 0.388 5 1 18 52
A ≺ D̄ 0.028 0.250 0.329 0.079 0.250 0.028 0.329 1 5 31 39
A ≺ E 0.030 0.342 0.237 0.030 0.342 0.079 0.237 5 1 41 29
B ∼ E 0.041 0.041 0.498 0.028 0.041 0.605 0.395 42 2 4 28
A ≺ F 0.054 0.309 0.270 0.054 0.309 0.079 0.270 4 2 37 33
F ≺ G 0.058 0.219 0.368 0.058 0.219 0.368 0.197 38 3 23 12
C ≺ D̄ 0.059 0.362 0.231 0.303 0.362 0.059 0.231 3 20 29 24
A ≺ B 0.060 0.329 0.250 0.060 0.329 0.079 0.250 4 2 40 30
C ≺ F 0.099 0.244 0.382 0.099 0.244 0.303 0.382 18 5 23 30

(C ≺ E) 0.112 0.319 0.349 0.112 0.319 0.303 0.349 18 5 28 25
D̄ ≺ G 0.120 0.388 0.257 0.197 0.388 0.257 0.120 23 9 38 6

(C ≺ B) 0.134 0.319 0.362 0.319 0.134 0.303 0.362 17 27 6 26
(Ē ≺ G) 0.148 0.296 0.401 0.197 0.296 0.401 0.148 36 10 25 5
(B̄ ≺ G) 0.180 0.309 0.388 0.197 0.309 0.388 0.180 35 9 26 6
(D ∼ F̄ ) 0.208 0.480 0.208 0.421 0.579 0.187 0.208 11 21 30 14
(D ∼ Ē) 0.301 0.484 0.301 0.394 0.606 0.301 0.288 17 15 29 15
(B ∼ D̄) 0.338 0.500 0.338 0.590 0.411 0.337 0.337 17 27 15 17
(B ≺ F ) 0.360 0.360 0.476 0.360 0.338 0.581 0.419 25 19 16 16
(E ≺ F ) 0.427 0.427 0.419 0.427 0.395 0.419 0.319 24 22 17 13

aThe true and false relations (in parentheses) cross each other by only one case.
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FIG. 6. Arginine biosynthetic pathway. The four genes code for the enzymes (not shown) that catalyze each reaction.

Table 9. The States of Presence in the Experiments of Growth Response

Presence of elements
Mutant
strains E F G H Ornithine Citrulline Arginino-succinate Arginine

Wildtype 1 1 1 1 1 1 1 1
argE 0 1 1 1 0 0 0 0
argF 1 0 1 1 ? 0 0 0
argG 1 1 0 1 ? ? 0 0
argH 1 1 1 0 ? ? ? 0

Next, we have another look at this example from the perspective of the Boolean logic proposed in
this paper. First, we rearrange the data from the experiments in an array; see Table 9. Please notice that
this state table is different from the one shown in Chapter 9, page 275, in Russell (1995). The first four
columns are definitions of the mutants. The next four columns show the presence state of the four arginine
precursors when none of them is added externally. This can be deduced by the change of growth pattern
after external controls. If we cannot determine the on–off status of an intermediate, we place a question
mark.

The problem is to obtain the pathway in Fig. 6 from Table 9. By checking with Table 3, we can easily
infer that (1) E+ ∼ Ornithine or E+ ≺ Ornithine, (2) F+ ≺ Citrulline, (3) F+ ≺ Argininosuccinate,
(4) F+ ≺ Arginine, (5) G+ ≺ Argininosuccinate, (6) G+ ≺ Arginine, and (7) H+ ≺ Arginine. These
pairwise relations are consistent with the sequence in Fig. 6. Even though the heuristic arguments of
Russell (1995) can do the same job, the pairwise Boolean logic is more general. Also, we note that
measurement error has not been considered in the example. When measurement error is unavoidable, we
still can make inference by s-p-scoring. This is its advantage over no-measurement-error logic.

Yeast expression data

To study the signaling and circuitry of multiple mitogen-activated protein kinase MAPK pathways,
Roberts et al. (2000) reported the expression data of yeast Saccharomyces cerevisiae for various knock-
out cells under controlled experimental conditions. They particularly investigated four (MAPK) pathways:
pheromone, PKC, HOG, and filamentous growth. We mentioned earlier that it is important to sample as
much as possible from the state space of a network to avoid selection bias. This view highlights why
various kinds of activation and perturbation, as done in this experiment, are valuable and necessary for the
study of pathways. After activating relevant environmental factors (α-factor in this study), a cascade of
biological activities occur sequentially. We want to use DAB networks to describe some aspects of these
biological processes. We apply the s-p-scoring method to explore the expression profiles. Next, we show
some exploratory result on the pheromone pathway.

During mating of S. cerevisiae, haploid MATa and MATα cells communicate with each other through
secretion of pheromones α- and a-factor, respectively. Pheromone stimulates yeast cells to increase the
expression of mating genes and arrest cell division in the G1 phase of the cell cycle. The responses to
pheromone are initiated by a cell surface receptor that couples to a G protein and downstream MAPK
kinase cascade; see (Fig. 1A) in Roberts et al. (2000). In some experiments, MATa cells are exposed to
α-factor concentrations ranging from 0.15 to 500 nM. Cells with various knock-out genes are also tested.
The genomewide expression levels are measured via the technique of cDNA microarrays. Namely, the
abundance of each mRNA with respect to the reference is obtained in the form of expression ratios.
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FIG. 7. Some pairwise relations identified by s-p-scoring method from the expression data of yeast Saccharomyces
cerevisiae with knock-out and activation; see Roberts et al. (2000).

In our analysis, we exclude those experiments carried out under a different condition of 2% galactose
for 3 hours, and two experiments measured at 0 and 15 minutes after the α-factor exposure. In total,
we consider expression profiles from 45 experiments. We include the α-factor as an element and dis-
cretize it by setting it on if the concentration is larger than 0.50 nM and off otherwise. Figure 7 shows a
DAB network obtained from our analysis. The part of network close to the α-factor is well reconstructed.
That is, the pheromone α-factor activates the receptor Ste2p. Then, receptor stimulation releases free Gbg
(Ste4p/Ste18p). The transcription factor Ste12p, which activates the promoters of mating, is also identified
as one element downstream of the MAPK cascade. The positions of those genes in the middle of the path-
way, such as Ste20p, Ste11p, Ste7, are missed. FIG1 is a transcriptional reporter gene for activation of the
MAPK. Our analysis indicates its position in the pathway as shown in Fig. 7. We found that those genes
whose expressions stay steady after some exposure to a concentration of α-factor are more easily identified.

5. DISCUSSION

Discretization

The data types in the DAB networks are binary. If elements such as expression levels are observed on
a continuous scale, then we need to discretize them. In cDNA microarrays, a reference sample is also
hybridized to probe. The ratios of expression levels (or differences in the logarithm scale) lead to a natural
way of discretization. That is, an element is on if the log-ratio is larger than zero, and is off otherwise.
If other information is available for some elements, we can exploit it to achieve better discretization.
Consider expression levels of a gene A. Suppose the log-ratio of its expression is l−A in a knock-out
experiment �A, and is l+A in an experiment in which we know it is overexpressed. Then the threshold
L must satisfy l−A ≤ L ≤ l+A. Histograms of the expression levels are also helpful for discretization. In
the case that discretization is not perfect, the error mechanism introduced in the model still allows us to
run the s-p-scoring analysis. In Xing and Karp (2001), a mixture model is used as a quantizer for their
clustering method, and the result is quite good.

Coding issues

Each element in a DAB network is a dichotomous variable. In practice, an element may have more than
two levels. In this case, we introduce multiple pseudo elements to code for its values. For example, if an
element A has four levels, then we code it by two pseudo elements as shown in Table 10. In general, the
information in a binary element is equivalent to a bit, and n bits can encode up to 2n values.

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2005.12.170&iName=master.img-006.png&w=160&h=183
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Table 10. Coding an Element with Four
Expression Levels by Two Pseudo Elements

Level 0 1 2 3

Element A1 0 1
Element A2 0 1 0 1

If samples are obtained from a time course, then it is possible to consider differences of expressions
between two consecutive time points. In this way, the dynamics of the networks are included in the
analysis. For networks with feedback, caution is necessary to apply the s-p-scoring analysis. One strategy
is to consider data in a time window and then examine how the pairwise relations evolve as the time
window moves.

Computational complexity

The key step of the procedure is the computation of s- and p-scores for each of the m(m−1)
2 pairs

of elements, where m is the number of elements. The E-M procedure used to compute the MLE is
an iterative algorithm. It converges at a linear rate that depends on the fraction of missing data; see
McLachlan and Krishnan (1997). The number of iterations required for convergence varies depending on
initial values of parameters. A common practice in numerical implementation is setting an upper bound
for iterations. Consequently, this keeps the O(m2) complexity for the computation of MLE. According to
our numerical experience, the convergence is quite fast for the 2 by 2 count data. The sorting algorithm,
such as heapsorting, can rank the m(m−1)

2 s-p-scores in O(m2 log m) time and in place. Thus, the overall
complexity is O(m2 log m) in time and O(m2) in memory.

Software

We have developed MATLAB code for the s-p-scoring method.
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