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ABSTRACT

Motivation: Identifying transcription factor binding sites (TFBSs) is

helpful for understanding the mechanism of transcriptional regulation.

The abundance and the diversity of genomic data provide an excellent

opportunity for identifying TFBSs. Developing methods to integrate

various types of data has become a major trend in this pursuit.

Results: We develop a TFBS identificationmethod, TFBSfinder, which

utilizes several data sources, including DNA sequences, phylogenetic

information, microarray data and ChIP-chip data. For a TF, TFBSfinder

rigorously selects a set of reliable target genes and a set of non-target

genes (as a background set) to find overrepresented and conserved

motifs in target genes. A new metric for measuring the degree

of conservation at a binding site across species and methods for

clusteringmotifsand for inferringpositionweightmatricesareproposed.

For synthetic data and yeast cell cycle TFs, TFBSfinder identifies

motifs that are highly similar to known consensuses. Moreover,

TFBSfinder outperforms well-known methods.

Availability: http://cg1.iis.sinica.edu.tw/~TFBSfinder/

Contact: whli@uchicago.edu

Supplementary information: Supplementary data are available on

Bioinformatics online.

1 INTRODUCTION

The transcription of genes is controlled by interaction between

transcription factors (TFs) and their binding sites (TFBSs). Identi-

fying and characterizing the binding sites of a TF can provide a

better understanding of the function of the TF. Unfortunately,

TFBSs are usually short (�5–15 bp) and degenerate (Stormo,

2000), making it difficult to define TFBSs experimentally or

computationally. A traditional computational approach starts with

a collection of genes presumed to be bound by the same TF accord-

ing to their biological functions, expression profiles (Spellman

et al., 1998) or protein–DNA binding assays (Lee et al., 2002).

The next step involves the identification of overrepresented

sequence elements (Bailey and Elkan, 1995; Bannai et al., 2004;

Hertz et al., 1990; Pizzi et al., 2005; Roth et al., 1998). Some

methods further define a suitable background set as a control

(Kato et al., 2004; Liu et al., 2002; Sinha, 2003; Sinha and

Tompa, 2003; Zhu et al., 2002). More recently, phylogenetic foot-

printing methods have been used to test the conservation of

TFBSs across species (Cliften et al., 2003; Elemento and

Tavazoie, 2005; Emberly et al., 2003; Kellis et al., 2003; Tanay

et al., 2005; Wang and Stormo, 2005). Two issues should be

emphasized. First, a set of reliable target genes and a suitable

background set for a TF can significantly help find motifs prefer-

entially residing in the target set. Second, a change at a variable

nucleotide position in a TFBS may cause only a small effect on the

binding affinity, whereas a change at an invariant position may have

a strong effect (Moses et al., 2003). Thus, testing TFBS conserva-

tion requires a measure that can account for these features.

In this study, we propose a novel TFBS identification method,

called TFBSfinder, that utilizes several data sources, including

DNA sequences, phylogenetic information, microarray data and

ChIP-chip data. In TFBSfinder, reliable target genes of a TF are

selected from ChIP-chip data and are required to be co-expressed

with each other or to have a temporal (time-shifted) relationship

with the expression profile of the TF. The background set is selected

from the non-target genes of the TF according to ChIP-chip data.

Further, a new metric for measuring the degree of conservation at a

binding site across species is proposed. Finally, methods for clus-

tering conserved k-mers and for inferring the position weight

matrix (PWM) are developed. Our scheme of k-mer indexing

and subsequent clustering of k-mers is similar to that of Shalgi

et al. (2005) for identifying 30 UTR motifs that may affect stability

or localization of mRNAs.

We test the ability of TFBSfinder to recover planted

motifs in synthetic data and to identify TFBSs of cell cycle TFs

in Saccharomyces cerevisiae. For synthetic data TFBSfinder recov-

ers the planted motifs more accurately than well-known current

methods. For the yeast cell cycle TFs studied, most of our predicted

TFBSs are consistent with the consensus sequences in the

literature. Moreover, compared with well-known methods,

TFBSfinder recovers known binding sites with higher precision.

Finally, we explore the effects of target gene selection and the

conservation criterion on the accuracy of TFBS prediction.

2 METHODS

Figure 1 shows the flowchart of TFBSfinder (for a more detailed

figure, see our website). For a TF, we first define its target genes and

non-target genes using ChIP-chip data. Then, these target genes are filtered

as follows: they must either be co-expressed or have a temporal relationship

(synchronous or time-shifted) with the TF expression profile. Next, we

collect a pool of k-mers (6–9 bp) that occur more frequently and are�To whom correspondence should be addressed.
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more evolutionarily conserved in the promoters of target genes than in the

promoters of non-target genes using sequence data from related yeast spe-

cies. These candidate motifs are clustered and aligned to generate a prelim-

inary PWM. Finally, we use this PWM to select core sequences from the

promoter regions of target genes and use their respective flanking regions

from the genome to find the best motif to represent the TFBS.

2.1 Defining target and non-target genes for a TF

For TF a, a set of target genes (Ga) and a set of non-target genes (G�a) are

defined using the ChIP-chip data of Harbison et al. (2004). A gene belongs to

Ga if the p-value in the TF a ChIP-chip experiment is smaller than a certain

low threshold (e.g. pc < 0.0001), but belongs to G�a if the p-value exceeds a

certain high threshold (e.g. pc > 0.9). Since the in vivo DNA binding of a

TF indicated by ChIP-chip data does not necessarily imply regulation, we

use gene expression data to select reliable target genes from Ga as follows.

We first use the temporal relationship identification algorithm (W.S. Wu,

W.H. Li and B.S. Chen, submitted for publication) to identify genes in Ga

whose expression patterns are significantly correlated with that of TF a,

possibly with a time lag. Let x! ¼ ðx1‚ : : : ‚xNÞ be the regulatory profile of

TF a (derived from a sigmoid transformation of its expression profile) and

y! ¼ ðy1‚ :::‚yNÞ be the expression profile of gene y. We define a correlation

coefficient r(j) for each pair of x! and y!, where j is the time lag of y behind x that

results in their maximum correlation. Note that j should be substantially smaller

than N; e.g. in the case of the cell cycle data of Spellman et al. (1988), N ¼ 18

(covering two cell cycles) and we used j � 8, so that the possible time lag was

shorter than one cell cycle. Then we test the null hypothesis H0: r(j) ¼ 0 against

the alternative H1: r(j) 6¼ 0. Those genes with a p-value smaller than a cutoff are

considered to be the target genes of TF a with a temporal relationship.

In addition to genes selected by the above procedure, we use the

co-expressed genes in Ga. For this selection procedure, we use only the

time points where TF a is functional; for example, in the application to cell

cycle, the time points of TF a are selected following the procedure demon-

strated for the cell cycle in our previous study (Tsai et al., 2005). For the

selected time points, we calculate a threshold T, determined as the 95th

percentile correlation coefficient value of all the pairwise correlation coef-

ficients between 1000 gene pairs randomly chosen from the S.cerevisiae

genome. We quantify the expression profiles within a set of genes using the

EC score (expression correlation score), which is defined as the fraction of

gene pairs in the set with a correlation higher than T (Pilpel et al., 2001;

Banerjee and Zhang, 2003). A gene is discarded from Ga if elimination of the

gene yields a higher maximum EC score for the remaining genes. This

process is continued until the correlation of each pair in the remaining

genes becomes larger than T.

Additional target genes are recruited into Ga if there is experimental

evidence from any of the four TF databases (Cherry et al., 1998; Mewes

et al., 1999; Zhu and Zhang, 1999; Wingender et al., 2001).

2.2 Identifying overrepresented k-mers in target gene

promoters

For a k-mer sequence S, let fa and f�a be, respectively, the proportions of

genes in Ga and G�a with S occurring in their 500 bp upstream non-coding

regions. A k-mer S is considered overrepresented in Ga if fa is significantly

greater than f�a. For each S, we test H0: fa� f�a¼ 0 against H1: fa� f�a > 0

using the one-sided two-sample proportion test. We reject the null

hypothesis if

f a � f�a > z1�0:01 s:d:ðf a � f�aÞ ffi z1�0:01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ð1 � f Þ 1

jGaj þ
1

jG�aj

� �s
,

where f ¼ ðjGajf a þ jG�ajf�aÞ=ðjGaj þ jG�ajÞ is the pooled estimator of

the population proportion of a binomial distribution under the null hypo-

thesis and z1�0.01 is the z-score at the 0.01 critical value from the standard

normal distribution using the asymptotical normal approximation. Before we

proceed, we impose the following constraint on the upper threshold of f�a to

eliminate simple repetitive elements such as the TATA-box:

f�a þ z1�0:01 s:d:ðf�aÞ ffi f�a þ z1�0:01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�að1 � f�aÞ/jG�aj

p
� d‚

where f�a is assumed to come from a binomial distribution and d is set to

0.16. (The 0.16 cutoff was empirically determined from our experiments

with 27 known cell cycle TFs.)

2.3 Identifying conserved k-mers in target genes

We develop a method to test whether a k-mer S has a higher degree of

conservation across related species in Ga than in G�a. For this purpose we

calculate a conservation matrix as follows. For genes in S.cerevisiae whose

upstream regions contain S, we perform an alignment (ClustralW) on the

promoter regions (500 bp, intergenic regions only) of its orthologues in

Saccharomyces paradoxus, Saccharomyces kudriavzevii, Saccharomyces

mikatae and Saccharomyces bayanus and collect the orthologous k-mers

most similar to S in the vicinity of S’s positions in S.cerevisiae (a region

within 3*k bp). We create a conservation matrix for S from all these poten-

tially orthologous k-mers by computing the frequency of each nucleotide at

each position and correcting for background frequencies, similar to a PWM.

The value for base b at position i in the conservation matrix is

Wb;i ¼ log2

pðb‚ iÞ
pðbÞ ‚

where p(b) is the background probability of base b and p(b,i) is the corrected

probability of base b at position i, calculated as

pðb;iÞ ¼
f b‚ i þ pðbÞ
N þ 1

‚

where N is the number of orthologous k-mers and fb,i is the counts of base

b at position i. This procedure is to eliminate null values before

log-conversion and to correct for a small sample size (Wasserman

and Sandelin, 2004). Each orthologous k-mer can be scored with the

Target Gene Selection

Test of Conservation

Test of Over-Representation

Over-represented k-mers

Conserved, overrepresented k-mers

Hierarchical Clustering

Preliminary PWM

Final PWM

genome seq.

Genome seq.

orthologous 
genome seq.

microarray
literature

ChIP-chip

Given TF

k-mers, k=6~9 bp

targets non-targets

Fig. 1. Flowchart of the TFBSfinder method.
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conservation matrix by summing the values that correspond to the observed

nucleotide at each position:

Xk
i¼1

Wli‚ i‚

where li is the nucleotide at position i in the orthologous k-mer. For each

gene, we collect all the orthologous k-mer scores as the conservation scores

of S. If there are multiple occurrences of S within the same gene, the ones

with the highest sum across species are selected. The conservation matrices

of all k-mers are calculated in advance to speed up the computation.

Subsequently, we perform the one-sided Kolmogorov–Smirnov (KS) test

to select k-mers with significantly higher conservation scores in Ga than in

G�a. The KS test is a non-parametric test to determine if two distributions

differ significantly. For each k-mer S, we test H0 : FGa ¼ FG�a against

H1: FGa<stFG�a using the one-sided KS test, where F denotes the cumulative

distribution function of the conservation scores of a gene group. If H0

is rejected,FGa<stFG�a , which means that the conservation scores in

group Ga are ‘stochastically greater’ than those in group G�a.

2.4 Constructing the position weight matrix

Since the binding motif can be variable at several positions, we group the

candidate patterns (the overrepresented and conserved k-mers) together

based on overlapping genomic positions and their similarity. First, we record

all incidences of these candidate patterns in the 500 bp upstream regions of

the target genes. If the occurrences of different k-mers overlap in the gen-

ome, the longest continuous pattern spanning the candidate patterns is

added into the candidate pool to eliminate redundancy. Then, we perform

a hierarchical clustering algorithm to group and align similar candidate

patterns. At the start, the algorithm assigns each candidate pattern to its

own group, and the similarity between two groups is calculated from their

optimal alignment without gaps. At every step, the two groups with the

greatest similarity are merged into a new group according to the optimal

alignment. The similarities between the new group and the other groups are

then updated. The process is iterated until no pair of clusters shares a sim-

ilarity above 0.6. (This cutoff point and the following one were empirically

determined from our experiments with 27 known cell cycle TFs. However,

different cutoff thresholds between 50 and 65% do not have strong influences

on the performance of our method. The only pronounced effect it makes is on

the number of motif groups, as shown in Supplementary Table 1.)

For each alignment of the remaining clusters, a nucleotide position

is excluded if <50% of the patterns selected have a nucleotide at that

position. We construct a preliminary PWM for the remaining positions.

Those aligned sequences are scored according to the preliminary PWM

and the third quartile of these scores is used as the cutoff to eliminate

noisy patterns. Using the preliminary PWM with the cutoff, we scan the

promoter sequences of target genes. Those patterns with a score larger than

the cutoff are retained. These patterns are then padded with 50 bp of their

flanking sequences in the genome. Next, we calculate the entropy at each

nucleotide position. Starting from the position of the minimum entropy, we

define a core region and extend it in both directions until the entropy rises

above the cutoff, which is defined as the 95th percentile of an empirical

entropy distribution generated by scrambling the padded alignments

1000 times. The core region is represented as a PWM with the cutoff.

3 RESULTS

We studied the performance of TFBSfinder using simulation

and known PWMs. Further, we compared the performance of

TFBSfinder with those of three well-known methods: AlignACE

(Roth et al., 1998), MEME (Bailey and Elkan, 1995) and MDscan

(Liu et al., 2002). AlignACE and MEME are designed to identify

degenerate motifs that are overrepresented in the input set with

respect to a background frequency model. AlignACE uses an

iterative masking approach to identify multiple overrepresented

motifs, based on the Gibbs sampling algorithm. MEME uses the

expectation maximization (EM) technique to identify motifs by

optimizing an E-value of a statistic that is the product of the

p-values of position information contents. MDscan adopts a

word numeration strategy to find enriched motifs in the input

and employs a heuristic method to update the motif model, with

the third-order Markov model or a given background set. We used

the default values for parameter setting. Motif width is set to be

6–9 bp in MEME and 10 bp in MDscan. The versions used are

AlignACE v4.0, MEME v3.5.2 and MDscan v1.0.

3.1 Synthetic data simulation

In the simulation studies, the four methods compared were applied

to 50 datasets each of which contained both a set of ‘target’ genes

(between 25 and 50 genes) and a set of ‘non-target’ genes (between

500 and 800 genes) randomly selected from the yeast genome.

Ideally, a method should not detect motifs from a random set of

genes. TFBSfinder reported motifs only for 7 out of the 50 datasets,

while AlignACE, MDscan and MEME each reported a number of

motifs for all 50 datasets. While some of these motifs may be

biologically meaningful, most of them seem to be random motifs

(simple repetitive elements) or common cis-elements such as

TATA box.

In addition, we investigated the recovery rate of planted motifs

for each method. From those 43 sets of synthetic data where

TFBSfinder reported no motif, we randomly selected 10 sets for

motif planting. For each set, a binding motif with known consensus

was randomly selected to be planted and designated as the ‘answer’.

The abundance of each binding motif planted was determined using

the degree of conservation and degeneracy similar to its occurrences

in the yeast genome. The motifs were inserted into the promoter

regions of the target genes and their orthologous sites, where the

inserted positions were selected at random between 20 and 480 bp

upstream of the start site. The probability of each target gene con-

taining at least one occurrence was randomly chosen between

0.2 and 0.5, and the probability of the motif occurring one, two

or three times in the same promoter region of a target gene was 70,

20 and 10%, respectively. As shown in Supplementary Table 2,

TFBSfinder produced motifs most similar to the planted motifs in

8 out of 10 runs (the similarity is defined in Section 3.4). Overall, it

also achieved a higher sensitivity [TP/(TP+FN)] and specificity

[TP/(TP+FP)] in motif recovery (Table 1). Note that our method

produced only one motif for each of the synthetic runs, whereas the

other methods gave multiple motifs and the motif identified by

AlignACE or/and MEME that matched best to the answer often

failed to rank number one in its outputs. For more details, see

Supplementary Table 2.

3.2 Identifying the binding sites of yeast cell cycle TFs

For each of the 50 cell cycle TFs identified in Tsai et al. (2005),

the binding threshold (pb) is set to 0.0001 or 0.001 and the non-

binding threshold (pnb) to 0.8 or 0.9 to select a sufficient number of

target and non-target genes. Twelve TFs (Arg80, Ask10, Haa1,

Hal9, Hir2, Hir3, Met18, Phd1, Rcs1, Rme1, Skn7, and Spt23)

are found to have fewer than 10 potential target genes and are

excluded from further analysis. The cutoff p-values for the tests

of overrepresentation (one-tailed two-sample proportion test) and

conservation (KS test) are set to 0.01 and 0.005, respectively.

Identifying transcription factor binding sites
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Table 2 displays the 38 predicted TFBSs as 38 sequence logos.

Our inferred PWMs agree well with 10 known PWMs, 13 known

binding consensus sequences and four (Dig1, Fhl1, Met4 and Stb1)

predicted consensus sequences (Harbison et al., 2004). For the

remaining 11 motifs, several observations can be made. Although

the binding motif of Mig2 is unknown, Mig2 is structurally homo-

logous to Mig1, and the TFBSs predicted for the two TFs are highly

similar. Ndd1 does not bind to DNA directly but is recruited by

Fkh1/Fkh2 to regulate genes. Indeed, for Ndd1 we inferred a TFBS

that greatly resembles the binding site of Fkh1/Fkh2. YOX1 is

found to co-occur with MCM1 and the putative binding sites are

thought to be TAATTR (Pramila et al., 2002). TFBSfinder reveals a

conserved motif TTAGGAAW as the binding site of Yox1 with a

slightly more degenerate motif YAATTA nearby. TFBSfinder pre-

dicts TTMGCR as the binding motif for Hir1, for which no known

consensus is available. Yap5 is an interesting example in that a

majority of Yap5 target genes reside in the subtelomeric regions

of 12 yeast chromosomes and lack orthologues in the other four

species. These targets are likely duplicated genes, because their

coding regions and promoters reveal a high degree of similarity,

possibly due to subtelomeric segmental duplications. The highly

similar promoters make it difficult for TFBSfinder to pick out the

TFBSs in these genes. Similar situations are found for Dat1, Gat3

and Pdr1.

No candidate is found for Smp1, and the results for Gal4 and Sut1

fail to match literature evidence, in part due to an insufficient

number of target genes (16, 12 and 18 for Gal4, Sut1 and Smp1,

respectively). The failure to identify the correct binding site for

Gal4, specifically, can be attributed to the fact that the number

of variable positions (11 Ns) in Gal4 (CGGN11CCG ) far exceeds

the capacity of our current program. While Sut1 has a sequence

located in the C-terminal half that is similar to the Zn(II)2Cys6

binuclear cluster DNA-binding domain shared by many TFs such as

Gal4, it does not appear to bind to DNA directly. Rather, it phys-

ically interacts with Cyc8 to prevent the Cyc8-Tup1 complex from

repressing hypoxic genes through their association with Rox1. This

added layer of binding complexity limits our ability to identify the

TFBS.

From the results, we deduce groups of TFs whose TFBSs are

highly similar, including Msn2-Msn4, Fkh1-Fkh2-Ndd1, Swi4-

Swi6-Mbp1-Stb1, Met31-Met32-Met4, Dig1-Ste12 and Ace2-

Swi5. This is consistent with experimental evidence that either

they are proteins with homologous DNA-binding domains or one

is the piggy-back binding TF of the other. For example, Msn4 is a

structural homolog of Msn2. Msn2 is mostly responsible for the

binding of STRE (STress Response Element) and Msn4 can weakly

interact with STRE and can partially compensate for the absence of

MSN2. Msn2 might recognize promoter sequences of the SUC2

gene that are normally bound by the Mig1 repressor (CCCCC/

CCCCG), which is similar to STRE. In fact, four TFs (Msn2,

Msn4, Mig1 and Mig2) have the same C2H2 zinc finger domain.

Swi4 and Swi6 form the SBF complex and Mbp1 and Swi6 form the

MBF complex. We were able to correctly identify the TFBSs of

Swi4 and Mbp1 and to discover both motifs for Swi6. For Stb1,

which plays a role in the regulation of MBF-specific transcription,

TFBSfinder also yielded a motif highly similar to that of the MBF

complex.

3.3 Importance of target gene selection and test of

motif conservation

To explore the effects of target gene selection and the test of motif

conservation, we evaluate the performance of TFBSfinder with

and without these two procedures for 27 TFs with known

PWMs, known consensuses or predicted consensuses. We use

the consensus sequences as the correct answers and call a candidate

motif pattern a ‘hit’ if there is 80% or higher similarity in their

overlapping regions, which are required to be at least 4 bp in length.

Highly degenerate positions (B, D, H, V and N) in the consensus are

ignored. We then define the hit ratio as the proportion of ‘hits’

within a set of candidate patterns. Note that there are two major

groups of candidates for SWI6 that represent the motifs of SCB

(CNCGAAA) and MCB (ACGCGT), respectively. Candidate motif

patterns that match either one are considered hits.

We find 19 out of 27 TFs to achieve a higher hit ratio when target

genes are pre-selected (Fig. 2). In particular, target gene selection

greatly increases the hit ratios for Ace2, Mig1 and Swi5. For Dig1

and Rlm1, the candidate patterns identified without target gene

selection were so well conserved and overrepresented that the hit

ratio was already 100%, which could not be further improved by a

target gene selection procedure. The omission of target gene selec-

tion does not alter the candidate hit ratios for Tec1, Met4 and Msn2

because the numbers of target genes eliminated by target gene

selection are too few to make an impact on the selection of candidate

patterns (detailed results can be found on our website). For the

remaining three TFs, Msn4, Met31 and Stb1, the hit ratios without

target gene selection are somewhat higher than those with pre-target

gene selection; note that the consensuses of Stb1 was predicted, not

experimentally verified. The average hit ratios of TFBSfinder with

and without target gene selection are 0.76 and 0.61, respectively,

indicating that target gene selection indeed reduces noise in the

target gene set. However, the procedure for testing the correlation

between the expression profiles of the target gene and the TF is not

recommended if the experimental time points are far apart or not

evenly distributed.

Figure 2 shows an �25% reduction in hit ratio when the test of

motif conservation is omitted, suggesting that the test is effective in

helping eliminate overrepresented but false candidate motifs. If

TFBSfinder is carried out when neither the test of motif conserva-

tion nor target gene selection is included, the average hit ratio falls

to only 39%. The results indicate that both the target gene selection

Table 1. Average performances of TFBSfinder, AlignACE, MDscan and

MEME on 10 synthetic datasets

TFBSfinder AlignACE MDscan MEME

Similarity (S) 0.93/0.93 0.68/0.93 0.62/0.72 0.78/0.82

Sensitivity (Sn) 0.86/0.86 0.30/0.72 0.29/0.52 0.60/0.54

Specificity (Sp) 0.92/0.92 0.26/0.79 0.24/0.46 0.53/0.52

The four methods are evaluated using the similarity between an inferred motif and the

planted motif (S) and the ability to recover the planted TFBS [sensitivity (Sn) and

specificity (Sp)]. Within each entry, the value on the left denotes the average similarity,

sensitivity or specificity of a given method, with only the highest ranking motif con-

sidered, while the value on the right denotes the average similarity, sensitivity or spe-

cificity of a given method for the motif that matches best to the answer, regardless of its

ranking.
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Table 2. Comparison of predicted binding specificities to known PWMs or consensus sequences

ABF1* MIG1*

ACE2* ACCAGC MIG2 Unknown

BAS1* TGACTC MSN2* AAGGGG

DAT1
duplicate genes in

subtelomeres
unknown MSN4* AAGGGG

DIG1* TGTTTCA# NDD1 unknown

FHL1* CAYCCRTACA# PDR1
duplicate genes in

subtelomeres

FKH1* TTGTTTACC RAP1*

FKH2* GGTAAACAA REB1*

GAL4 RLM1*

GAT3 duplicate genes in
subtelomeres

unknown SMP1 not available

HAP1* CGGNNNTANCGG STB1* TTSGCGTYY#

HAP4* YCNNCCAATNANM STE12*

HIR1 unknown SUT1 GCSGSGNNSG#

MAC1* GAGCAAA SWI4*

MBP1* SWI5*

MCM1* SWI6* TTTCGNG

MET31* AAACTGTGG TEC1* RGAATG

MET32* AAACTGTGG YAP5
duplicate genes in

subtelomeres
TTATCAA

MET4* GSCRCSMCASWTKKY# YOX1 TAATTR#

TF Results (PWM)
known PWM or

consensus
TF Results (PWM)

known PWM or
consensus

Degenerate codes: R: A or G, Y: C or T, S: G or C, W: A or T, M: A or C, K: G or T, B: C, G, or T, 
D: A, G, or T, H: A, C, or T, V: A, C, or G, N: A, C, G, or T. A consensus of a TF marked with # 
indicates that the consensus is obtained from computational prediction. TFs marked with * are used in 
further analysis.
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procedure and the test of motif conservation improve the accuracy

of TFBS detection.

A breakdown of the information provided by ChIP-chip, exp-

ression profiles and literature-derived databases can be found in

Supplementary Figure 1. On average, target gene selection based

on temporal correlation or co-expression generally retains 45% of

the binding targets initially identified by ChIP-chip experiments.

With the aid of expression profiles, ChIP-chip information con-

tributes to selection of 60% of the final set of target genes. Evidence

from the literature alone accounts for roughly 36%, while 4% of the

target genes are selected based on both the literature and ChIP-chip/

expression data.

3.4 Comparison to well-known methods

We evaluate the performance of TFBSfinder against AlignACE,

MDscan and MEME on 27 yeast cell cycle TFs with known

PWMs, known consensuses or predicted consensuses. This is

done by measuring the similarity of the predicted motifs to the

consensus sequences. For each of the other three methods, we

restrict the numbers of output motifs to be the same as that for

TFBSfinder. For those compared motifs available only in the con-

sensus form, we generate the corresponding substitution-derived

PWM (sdPWM) according to Doniger et al.’s (2005) model,

which is constructed from all occurrences of the consensus sequence

with 0 or 1 difference in the orthologous positions in the other four

species. To calculate the similarity between a predicted PWM (a)

and a substitution-derived PWM (b), they are aligned to maximize

1 � 1

w

Xl
i¼1

1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
L2fA‚T‚C‚Gg

ðai;L � bi;LÞ2
‚

s

where w is the number of positions in the substitution-derived

PWM, and ai,L and bi,L are the estimated probabilities of base L
at position i in PWMs a and b, respectively. Both sides of a are

padded with a sufficient number of bases (A:0.31, T:0.31, C:0.19

and G:0.19) to ensure that each position of the substitution-derived

PWM has a corresponding position in a. This distance metric is a

modified version of that in Harbison et al. (2004). For each method

and for each TF, we calculate the similarity between all generated

motif groups and the substitution-derived PWM. The group with the

maximum similarity is selected as the right answer. As shown in

Table 3, among the four methods TFBSfinder identified motifs with

the highest similarity in 13 out of 27 TFs, while AlignACE, MEME

and MDscan performed best for 7, 8 and 1, respectively. Of those 14

TFs where TFBSfinder did not outperform all of the other three

methods, the similarities of our predicted motifs to the consensuses

were close to the highest. The average similarity for TFBSfinder for

these 27 TFs (0.84) is significantly higher than the averages (0.74,

0.77 and 0.62) for the other methods.

Next, we compare the accuracy of binding site predictions of

the four methods to known TF binding sites. We collect the

experimentally verified binding sites of these 27 TFs from the

TRANSFAC and SCPD databases. For each TF, duplicate instances

of the same binding site are removed, and those located more than

500 bp away from the start site are not considered. We also ignore

binding sites when no motif can be found within the positions

indicated. After the filtering, only 12 TFs with a total of 101 binding

site records are retained. We measure the sensitivity and specificity
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Fig. 2. Importance of target gene selection and test of motif conservation

illustrated by the hit ratios of candidate motif patterns of the following four

methods: ‘All’ stands for TFBSfinder; ‘No Target Gene Selection’ stands for

TFBSfinder without target gene selection; ‘No test of Conservation’ stands

for TFBSfinder without conservation filtering and ‘No TGS/TC’ stands for

TFBSfinder without target gene selection and test of motif conservation. The

y-axis denotes the hit ratio.

Table 3. Performance comparisons of TFBSfinder, AlignACE, MDscan and

MEME, using 27 yeast cell cycle TFs with known PWMs (with ‘a’), known

consensuses or predicted consensuses

TFs TFBSfinder AlignACE MEME MDscan

ABF1a 0.72 0.87 0.57 0.59

ACE2 0.92 0.59 0.56 0.35

BAS1 0.95 0.94 0.94 0.58

DIG1 0.94 0.94 0.93 0.51

FHL1 0.90 0.91 0.85 0.90

FKH1 0.86 0.81 0.93 0.88

FKH2 0.80 0.85 0.87 0.58

HAP1 0.65 0.50 0.51 0.47

HAP4 0.78 0.65 0.64 0.61

MAC1 0.82 0.83 0.82 0.80

MBP1a
0.96 0.95 0.93 0.95

MCM1a 0.85 0.86 0.46 0.88

MET31 0.83 0.52 0.84 0.43

MET32 0.93 0.84 0.93 0.42

MET4 0.76 0.78 0.73 0.46

MIG1a 0.87 0.51 0.83 0.51

MSN2 0.80 0.53 0.83 0.38

MSN4 0.85 0.82 0.87 0.38

RAP1a 0.80 0.85 0.82 0.84

REB1a 0.94 0.44 0.95 0.93

RLM1a
0.69 0.57 0.58 0.67

STB1 0.87 0.86 0.57 0.51

STE12a 0.82 0.65 0.83 0.77

SWI4a 0.82 0.91 0.83 0.60

SWI5a
0.84 0.69 0.80 0.58

SWI6 0.88 0.82 0.85 0.69

TEC1 0.89 0.70 0.61 0.60

Average 0.84 0.74 0.77 0.62

A substitution-derived PWM (sPWM) is generated for each known consensus according

to Doniger et al.’s (2005) model. We modified the distance metric of Harbison et al.

(2004) to calculate similarity between two PWMs. Each entry represents the similarity

between the derived PWM and the sPWM or known PWM. For each TF (row), the entry in

boldface indicates the derived PWM most similar to sPWM or known PWM.
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using the following criteria. A predicted binding site is counted as a

hit if it overlaps with a true binding site by >50% of the length of the

shorter one of the predicted or known binding sites. A binding site

prediction is made based on the following rule. For each TF, we

select the best motif from the output and assign a cutoff for its

PWM, which is defined as the 5th percentile of the PWM scores

of all sequences used to generate the PWM. We then scan the

promoter sequences and make a prediction of a binding site if its

PWM score is greater than the cutoff. As shown in Table 4,

TFBSfinder has the highest sensitivity in 8 of the 12 TFs and

the highest specificity in 6 TFs. The average sensitivity and

specificity for TFBSfinder are 0.63 and 0.59, higher than those

for the other three methods. These comparisons show the superiority

of TFBSfinder over the three current methods.

Note that without test of conservation and target gene selection,

our method will not be so robust. This is a limitation of our method.

However, as long as more than one species are available, a test of

conservation can be conducted. In principle, our approach can be

applied to higher eukaryotes such as human but considerable modi-

fications are needed—this will be explored in the future. In this

paper, our target selection is intended for multiple-time-point data.

For non-temporal data, the temporal correlation test cannot be done

but the co-expression test can still be applied.
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