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Abstract

In this study, we propose an integrated approach based on iterative sliced inverse regression (ISIR) for the segmentation of ultrasound and
magnetic resonance (MR) images. The approach integrates two stages. The first is the unsupervised clustering which combines multidimensional
scaling (MDS) with K-Means. The dimension reduction based on MDS is employed to obtain fewer representative variates as input variables
for K-Means. This step intends to generate the initial group labels of the training data for the second stage of supervised segmentation. We
then combine the SIR with the nearest mean classifier (NMC) or the support vector machine (SVM) to iteratively update the group labels for
supervised segmentation. The method of SIR is introduced by Li [Sliced inverse regression for dimension reduction. J. Am. Stat. Assoc. 86
(1991) 316–342] to explore the effective dimension reduction (e.d.r.) directions from the training data embedded in high-dimensional space.
The test data are then projected onto these directions and the classifiers are further applied to classify the test data. The integrated approach
based on ISIR is evaluated on simulated and clinical images, which include ultrasound and MR images. The evaluation results indicate that
this approach provides an improvement of image segmentation over the methods to be compared without dimension reduction.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Segmentation is a preliminary step for further analysis of
images. It is used to partition the images into regions that share
similar characters. Segmentation of images with soft tissues
and tumors is typically encountered in medical images like
the ultrasound and magnetic resonance (MR) images. Image
segmentation can be performed in two different ways, namely
through unsupervised and supervised segmentation. In the case
of the latter, it is required that the group labels of the training
data be known a priori, while the former does not. Numerous
image segmentation techniques are available in the literature.
A review can be found in Clarke et al. [1] and Pal and Pal [2].
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We have proposed improved snake models for ultrasound image
segmentation [3–6]. However, the shape-based segmentation
methods required prior information about the desired objects.
Supervised techniques including neural networks [7] have been
applied to segment MR images of the brain. Due to the large
number of neurons used, a high computational cost is inevitable.
In Ref. [8], the principal component analysis (PCA) is used
to compare with other transformation methods on the human
brain MR image for image segmentation. PCA is widely used
in segmentation due to its advantage of easy implementation.
We planned in the present work to explore the application of
dimension reduction techniques beyond the PCA for image
segmentation.

In this study, we propose an integrated approach based on it-
erative sliced inverse regression (ISIR) to segment images from
the perspective of statistical classification for image pixels in
the presence of spatial structure. The approach includes two
stages for unsupervised clustering and supervised segmentation
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with dimension reduction techniques. The image data with spa-
tial structure in high dimension is typically encountered when
performing segmentation. Hence, the dimension reduction is
used to overcome the curse of the dimensionality and to reduce
the computational costs. The dimension reduction technique
employed in our unsupervised clustering stage is multidimen-
sional scaling (MDS) [9]. The resulting vectors obtained from
training data are called MDS-variates. These variates are used
as input variables for K-Means [10]. For K-Means, the number
of clusters has to be specified a priori. This step is designed
to obtain the initial group labels of the training data. The re-
sulting group labels were further used to perform a supervised
segmentation algorithms in the second stage.

The supervised segmentation will be conducted by a sim-
ple nearest mean classifier (NMC) or support vector machine
(SVM) to iteratively update the group labels based on the sliced
inverse regression (SIR) [11]. SIR finds the effective dimension-
reduction (e.d.r.) directions of the data that provides a sim-
ple and fast algorithm to visualize the data. This method has
been extended and used in various applications [12–14]. Espe-
cially, the directions obtained by SIR exhibit the largest differ-
ence among group means relative to the within-group variance,
which are useful for pixel classification purposes. The method
of NMC is simple which uses the label of the nearest group
mean to perform classification. Recently, the support vector
machines (SVM) received a lot of attention for its good perfor-
mance [15,16]. It was originally designed for binary classifi-
cation problem. We employed two extensions of the SVMs for
multiclass data, namely the LIBSVM [17] and the SVMTorch
[18] for comparison.

We evaluated the performance of the K-Means with or
without dimension reduction by performing the unsupervised
segmentation on the simulated and texture images in three
different feature domains of images: space, frequency and
space–frequency domains. Moreover, we compared the per-
formance of the supervised segmentation by classifiers with
or without dimension reduction by SIR. The classifiers consist
of NMC or SVM. An iterative process is proposed to offer
the advantages of eliminating the need for user intervention in
order to carry out image segmentation. The flow chart of unsu-
pervised and supervised segmentation in the proposed iterative
process is shown in Fig. 1.

The paper is organized as follows. The feature extraction
of images is given in Section 2. Section 3 describes the MDS
as well as K-Means for unsupervised clustering procedures.
Section 4 presents the proposed segmentation procedure which
includes NMC or SVM in ISIR. The segmentation results on the
simulated, texture and clinical medical images are reported in
Sections 5 and 6. The conclusion and discussion are addressed
in Section 7.

2. Feature extraction of images

Space domain: Local blocks. A rectangular lattice for
a digital image in 2D of size N × M is denoted by
S = {(x, y)|1�x�N, 1�y�M; x, y ∈ Z}, and denote the
grey level of an image at some pixel i by f (i), i ∈ S. The
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Fig. 1. The flow chart of the proposed approach for the two-stage image
segmentation is illustrated.

spatial characteristic of a pixel in a image is described by
its neighboring pixels. So, a local block with size b × b can
be formed as a feature vector xi of the central pixel i ∈ S,
i = 1, . . . , n and n = (M − b + 1)(N − b + 1). The dimension
of the feature vector in the space domain is then p = b2. These
vectors capture the local spatial features of an image and are
suitable for simple and regular textures. For supervised seg-
mentation, an image with n feature vectors is a testing data,
we randomly select m < n feature vectors as training data.

Frequency domain: Fourier transform of local blocks. If the
feature of an image is periodical over space, then the feature
of a local block in the space domain can be transformed to the
frequency domain by the Fourier transform. This transform will
highlight the periodical pattern [19]. This can be performed by
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fast Fourier transform if the block size is of the power of 2. For
a block with size b × b, the two dimensional discrete Fourier
transform can be expressed as

F(u, v) = 1

b2

b−1∑
x=0

b−1∑
y=0

f (x, y) exp
[
−i2�

(ux

b
+ vy

b

)]
,

where i=√−1, u, v=0, . . . , b−1. Because the image intensity
is real valued, the Fourier transform is symmetrical about the
center. By this symmetry, almost a half of FFT calculation is
redundant. Therefore, the feature vector xi in the frequency
domain consists of |F(u, v)| with dimension p=b2/2+2 if b is
power of 2. In the present study, the Fourier terms are complex
and the real amplitudes are used in calculation of |F(u, v)| for
the features in the frequency domain.

Space–frequency domain: Gabor filter banks of local blocks.
Human vision has demonstrated its superior capacity in detect-
ing boundaries of desired objects. Numerous researches on tex-
ture classification and segmentation have been carried out based
on early vision models [3–5]. The main concept is to conduct
segmentation on the so-called neuroimages. The neuroimages
are constructed by convolving the observed image with a bank
of specific frequencies and orientation bands, such as a bank
of Gabor functions. The general form of a Gabor function is
given by

g(x, y) = exp{−[(x − x0)
2a2

1 + (y − y0)
2a2

2]�}
× exp{−2�i[u0(x − x0) + v0(y − y0)]},

and its Fourier transform is

G(u, v) = 1

a1a2
exp

{
− 1

�

[
(u − u0)

2

a2
1

+ (v − v0)
2

a2
2

]}

× exp{−2�i[x0(u − u0) + y0(v − v0)]},
where (a1, a2) are parameters for scaling the two axis of the
Gaussian envelop, (x0, y0) are location parameters of the peak
of the Gaussian envelop, and (u0, v0) are spatial frequencies of
the sinusoidal in Cartesian coordinates. Each local block is con-
volved with a bank of Gabor filters with different frequencies
and orientations. We employed the so-called G-vector as the
feature vector [6] at pixel i = (x, y), which is computed by

xi = {gpk(x, y), gnk(x, y); k = 1, . . . , r},
where gpk(x, y) and gnk(x, y) are the summations of the pos-
itive and negative values for the neuroimages that is the con-
voluted image of the kth Gabor filter. Thus, the dimension of
the feature vector is p = 2r in the space–frequency domain.
For instance, we can consider a bank of r = 4 × 6 = 24 Gabor
filters that are designed with four scale of center frequencies√

2/2,
√

2, 2
√

2 and b
√

2/4 = 4
√

2 when b = 16, as well as
six orientation of angles of 0◦, 30◦, 60◦, 90◦, 120◦ and 150◦.

3. Unsupervised clustering by K-Means on MDS-variates

Let X={xi}n1 be a data set with n objects, where xi is a feature
vector in a p-dimensional metric space. Cluster analysis results

in non-overlapped K groups of a data set in which observations
preserve the coherent patterns. K-Means clustering [10] is one
of most well known clustering methods. Class labels ŷi’s are
determined for the feature vectors xi’s by computing the cen-
troid x̄k for each group and assigning each observation to the
group with the closest centroid. That is, ŷi =arg mink‖xi − x̄k‖.
K-Means is an iterative procedure because once the new x̄k is
obtained, ŷi changes and need to be recalculated which in turn
affect x̄k . These steps are repeated until x̄k stabilized.

The final clustering results highly depend on the initial x̄k .
In this study, the initial group centroids are obtained by first
ordering the distances of data points to the sample mean. Then,
the {1 + n(k − 1)/K}th point is selected as the initial centroid
for group k, where n is the total number of data points. The
number of groups K has to be known in the algorithm. In the
present study, K is specified according to the scientific problem
of interest. For example, the tumor and non-tumor tissues in
ultrasound images form two groups. The soft tissues and other
non-soft tissues in MRI images form two distinct groups.

It is common to first extract features from X suitable for
segmentation before applying the clustering or classification
algorithm at hand. Multidimensional scaling proposed by
Torgerson [20] is one of such useful feature extractors. MDS
presents a configuration of n objects in a low-dimensional
Euclidean space based on the information about the distance
between these objects. Classical MDS corresponds to linear
transformation of the input variables. The resulting combina-
tions are called MDS-variates. MDS bears much similarity to
two other unsupervised linear projection methods, namely, PCA
and factor analysis. We combine the MDS with K-Means to
perform the proposed clustering procedure. Applying the MDS
to the training data will produce the MDS-variates in the lower
dimensional subspace. The training data are image features
xi’s in the space, frequency and space–frequency domains. K-
Means can be used to cluster these variates and assign a group
label to each observation in the training data. The resulting clus-
ters are the initial labels for further supervised segmentation.
We denote the proposed unsupervised clustering approach as
MDS + K-Means.

4. Supervised segmentation

In the supervised segmentation, it is assumed that a train-
ing data with known group labels are available. In the present
study, a training data of size m is constructed by randomly sam-
pling from n testing feature vectors, where the training group
labels {ŷt }m1 for the training feature vectors {xt }m1 are obtained
in the preceding step. The training data is used to perform the
SIR algorithm for finding the projection directions. These pro-
jected data are used to construct the classifiers and perform the
segmentation.

4.1. Iterative sliced inverse regression (ISIR)

Li [11] presented the method of sliced inverse regression
(SIR) as a prototypical framework for dimension reduction.
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The following regression model is considered:

y = f (�t
1x, . . . , �t

Bx, �), (1)

where y is a univariate variable, x is a random vector with di-
mension p×1, p�B, �’s are vectors with dimension p×1, � is
a random variable independent of x and f is an arbitrary func-
tion. The �’s are referred to as e.d.r. directions or SIR projection
directions to be estimated. SIR is a method for estimating the
e.d.r. directions based on y and x. Under regular conditions in
Ref. [11], it is shown that the centered inverse regression curve
E[x|y] − E[x] is contained in the linear subspace spanned by
�t

j�xx (j = 1, . . . , B), where �xx denotes the covariance ma-
trix of x. Based on these facts, the estimated �’s can be ob-
tained by the procedures of standardizing x, partitioning slices
(or groups) according to the value of y, calculating the slice
means of x, and performing the PCA of the slice means with
weights as sample proportion within each slice.

The group labels obtained by the proposed clustering meth-
ods are the initial partitions. Generally, the clustering results
are not precise enough to obtain better segmentation. Further
improvements by iteration of supervised classification could
be applied to improve the segmentation results. We propose an
iterative SIR (ISIR) algorithm for estimating the e.d.r. directions
and image segmentation based on the training data {ŷt , xt }m1 .
This approach can be considered to be analogous to the
K-Means in spirit which iteratively updates the group labels
to construct the SIR projection directions. We could use these
new projection directions for further segmentation iteratively.
The algorithm is described as follows.

Algorithm of ISIR:

1. Compute sample mean x̄ and sample covariance matrix �̂xx
of xt ’s.

2. Divided the data set into K slices according to the categories
of ŷt . Denoted these slices by I1, . . . , IK . Let the proportion
of all observed ŷt ’s that falls in kth slice be pk , i.e.,

pk =
∑m

t=1�k(ŷt )

m
= mk

m
, �k(ŷt ) = 1 if

ŷt ∈ Ik, �k(ŷt ) = 0 otherwise.

3. Within each slice, compute the sample mean x̄k of
xt ’s, k = 1, . . . , K , and the weighted covariance matrix,
�̂W =∑K

k=1pk(x̄k − x̄)(x̄k − x̄)t .

4. Find the eigenvalues and eigenvectors for �̂W with respect
to �̂xx by solving

�̂W �̂j = �j �̂xx�̂j ,

where j = 1, . . . , p and �1 ��2 � · · · ��p. Then, the lead-
ing B eigenvectors �̂j ’s are used as the projection direc-
tions.

5. A projected training data and testing data is obtained by

zt=(�̂
′
1xt , . . . , �̂

′
Bxt ) and zi=(�̂

′
1xi , . . . , �̂

′
Bxi ). We call zi’s

the SIR-variates. A classifier is constructed using {ŷt , zt }m1 .
Denote the predicted group labels for training data and

testing data by ŷ
(r)
t , and ŷ

(r)
i for the current iteration r . If

r = 1, this refers to the classical SIR approach.
6. Iterative process: repeat step 2–5 unless one of the following

criteria holds:{(
m∑

t=1

I[ŷ(r)
t �= ŷt ]

)
−
(

m∑
t=1

I[ŷ(r−1)
t �= ŷt ]

)}/
m

��(=0.001) or (2)

m∑
t=1

I[ŷ(r)
t �= ŷt ]/m > �(=0.5) or (3)

r > R(=100), (4)

where I is an indicator function with I[x] = 1 if x holds, and
zero otherwise.

Criterion (2) describes the error rate difference between the
successive segmentations is within a tolerance � such as 0.001,
in which the result reaches a stable segmentation. Criterion (3)
states that the mean difference between the initial and the rth
result cannot exceed �, like 50%. This may happen when the
algorithm is diverged and the final segmentation is far from the
initial. If this criterion holds, the final segmentation is deter-
mined at the r̃th iteration with the minimum mean difference.
That is, r̃ = arg minr

∑m
t=1I[ŷ(r)

t �= ŷt ]/m. Criterion (4) limits
the number of iterations within a fixed number R, like 100, to
avoid an endless loop when the other two criteria fail to hold.

According to Theorem (5.1) in Ref. [11], the average of the
smallest p−B eigenvalues has asymptotically a �2 distribution
with (p −B)(K −B −1) degrees of freedom if x has a normal
distribution. As a result, the number of directions B is less than
or equal to min{K−1, p}. The ISIR algorithm can be applied to
obtain the stable e.d.r. directions, �̂= (�̂1, . . . , �̂B ), where B �
min{K − 1, p}. The responses y’s in the image are of a finite
number of K categories. Those (K − 1) e.d.r directions are
used for segmentation of K regions because K − 1 is typically
smaller than or equal to p. Further discussions regarding the
determination of K are reported in Refs. [11,21]. However, SIR
algorithm will fail to find the e.d.r. directions when the data is
symmetric. In this case, the principal Hessian directions (pHd)
[22] can be used as an alternative method to find the e.d.r.
directions.

Similar to PCA, SIR is a method based on the projection of
input variables x to the latent variables (components). However,
in contrast to PCA, SIR creates the components by modeling
the relationship between input x and response variables y while
maintaining most of the information in the input variables. SIR
can be seen as a PCA-like procedure performed on the random
variable E(x|y) instead of on x. That is, SIR looks for lin-
ear combinations of x which maximize var(E(atx|y))/var(atx)

instead of just var(atx). While PCA leads to an eigen-system,
SIR leads to a generalized eigen-system.

The leading canonical variates in Fisher linear discrimi-
nant analysis (LDA) are the linear combinations of x formed
by the vector a, which solves the maximization problem by
maxa(at�Ba/at�W a), where �B and �W are the between-
group and within-group covariances, respectively. As described
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in Ref. [23], the SIR variates are the same as the Fisher
canonical variates except for possible difference in scale. That
is, the LDA and SIR are equivalent in the population. Differ-
ences can arise in practice depending on the methods used
to estimate �B and �W . More discussion on the connection
between SIR and LDA was addressed in Ref. [24].

4.2. Nearest-mean classifier (NMC)

Nearest mean classifier (NMC) [25] is a simple and widely
used classifier. We use NMC for its simplicity and robustness in
this study. The NMC calculates the mean of the training vectors
for each group and perform classification based on the nearest
distance of a feature vector to group means. When NMC is
used with SIR, we can first project feature vectors onto these
e.d.r. directions found by SIR and then apply NMC on projected
feature vectors. The mean of the projected feature vectors for
every group in the training set is the centroid. A pixel i in a
test (or training) image is classified (or predicted) into the kth
group if the projected feature vector of that pixel is closest to
the centroid of kth group. That is, the predicted group label for
a feature vector xi is given by

ŷi = arg min
k

‖�′xi − z̄k‖, i = 1, . . . , n, (5)

where z̄k =∑
t∈Ik

zt /mk and zt = �′xt .

4.3. Support vector machines (SVMs)

SVMs have been researched and applied to many problems
recently [26,27]. This is particularly for its theoretical foun-
dations in computational learning theory and improved perfor-
mances in applications. The fundamental concept is to map the
data into high-dimensional space through a kernel function 	
and then find a hyperplane w to separate the groups. It was orig-
inally designed for binary separation. To extend this method to
multiclass classification, two approaches can be implemented.
One is the “one-against-the-others” approach, in which the kth
SVM model is constructed with all of the samples belonging
to the kth group in one group, and all the other samples with
another group. This is implemented in SVMTorch [18]. The
kth SVM solves the following optimization problem:

min
wk,bk,
k

1

2
‖wk‖2 + C

m∑
t=1


kt ,

wt
k	(xt) + bk �1 − 
kt if yt = k,

wt
k	(xt) + bk � − 1 + 
kt if yt �= k,


kt �0, t = 1, . . . , m,

where 	 is a function and C is the penalty parameter. The deci-
sion functions can be expressed as wt

k	(x)+bk, k=1, . . . , K .
The predicted group label ŷi for a pixel xi in the test data is
given by

ŷi = arg max
k

{wt
k	(xi ) + bk, k = 1, . . . , K}. (6)

The second one is the “one-against-one” approach. The
SVM trained model is constructed by using any of the two
groups. Hence, there are a total of K(K − 1)/2 classifiers. It is
implemented in LIBSVM [17] which solves the following
binary classification problem:

min
wkl ,bkl ,
kl

1

2
‖wkl‖2 + C

m∑
t=1


klt ,

wt
kl	(xt ) + bkl �1 − 
klt if yt = k,

wt
kl	(xt ) + bkl � − 1 + 
klt ifyt = l,


klt �0, t = 1, . . . , m,

where the training data are from the kth and lth groups. There
will be K(K − 1)/2 classifiers to be constructed with the
decision function:

Cg(xi ) =
{

k, wt
kl	(xi ) + bkl �0,

l otherwise.

g = 1, . . . , K(K − 1)/2.

A pixel xi in the test sample is classified into ŷi class by majority
voting, that is

ŷi = arg max
k

⎧⎨
⎩

K(K−1)/2∑
g=1

I[Cg(xi ) = k], k = 1, . . . , K

⎫⎬
⎭ ,

(7)

where I is an indicator function. If two groups have identi-
cal votes, LIBSVM selects one with the smaller index. These
two types of support vector machines are used to demonstrate
the proposed segmentation methods. In the present study, all
parameters used the default settings. Using different parame-
ters could lead to different results which can be evaluated in
the follow-up studies.

In the following, the segmentation approaches based on input
feature vectors xi without dimension reduction are denoted as
NMC, LIBSVM, and SVMTorch. The extended segmentation
approaches with SIR-variates zi are namely SIR+NMC, SIR+
LIBSVM and SIR + SVMTorch.

5. Simulation studies

In this section, we first perform the classical SIR + NMC,
SIR + LIBSVM and SIR + SVMTorch methods for segmen-
tation of the simulated images and the texture images. The
aim was to illustrate the ability and usefulness of the classical
SIR methods in the image segmentation problem. We then per-
formed the iterative process on the image in Fig. 4(c) to con-
trast the relative effectiveness of the iterative SIR methods to
the classical one.

5.1. Simulated images

For simplicity, we consider the case in which we constructed
a synthetic image with size 64 × 128 as shown in Fig. 2(a).
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Fig. 2. (a) The simulated image is used for evaluation of the proposed approach which consists of two circle objects (Cb, Cs) and background (Bg). (b)
The segmentation results by the SIR + NMC, SIR + LIBSVM and SIR + SVMTorch from top to bottom are demonstrated based on the clustering results of
MDS + K-Means with a block size of 8 × 8. The images from left to right are performed in the space, frequency and space–frequency domains, respectively.

There are three groups, namely two circle objects (denoted by
Cb, Cs) and a background (denoted by Bg) with grey levels
80, 120 and 100, respectively. The added noises are randomly
distributed from a normal distribution with mean zero and the
standard deviation of 20. Hence, the signal-to-noise ratio (SNR)
is equal to one. One thousand training samples are randomly
chosen for unsupervised clustering as one run. Table 1 shows
the average clustering error rates of 50 runs with various block
size in the space domain. One can see that the errors were
reduced while the block size is 9 × 9 in this case. Since the
algorithm of FFT is fast for the block size in the power of 2,
we consider the block sizes of 4 × 4 or 8 × 8 in this case for
comparing the effect of the block size.

Table 1
The average clustering error rates with various block sizes in the space domain

Block size K-Means MDS + K-Means

4 × 4 0.0633 0.0625
5 × 5 0.0447 0.0438
8 × 8 0.0432 0.0383
9 × 9 0.0372 0.0364
16 × 16 0.0410 0.0421

Table 2
The average error rates for the training data of the simulated image by the clustering methods are reported with a block size of 4 × 4 and 8 × 8 in the space,
frequency, and space–frequency domains, where p represents the feature dimension

Clustering methods Block size Features p Cs Cb Bg Total

K-Means 4 × 4 Space 16 0.0732 0.0574 0.0594 0.0633
FFT 10 0.0712 0.0553 0.0593 0.0619
Gabor 48 0.0331 0.0517 0.0509 0.0452

8 × 8 Space 64 0.0163 0.0685 0.0448 0.0432
FFT 34 0.0169 0.0671 0.0411 0.0417
Gabor 48 0.0223 0.0568 0.0355 0.0382

MDS + K-Means 4 × 4 Space 1 0.0747 0.0561 0.0568 0.0625
FFT 1 0.0706 0.0545 0.0589 0.0613
Gabor 1 0.0326 0.0459 0.0511 0.0432

8 × 8 Space 1 0.0169 0.0663 0.0316 0.0383
FFT 1 0.0172 0.0673 0.0282 0.0376
Gabor 1 0.0222 0.0538 0.0242 0.0334

Table 2 presents the average error rates of 50 runs by the
methods of K-Means and MDS + K-Means with a block
size of 4 × 4 and 8 × 8. We can observe that the average
clustering error rates with a block size of 8 × 8 are lower
than those with a block size of 4 × 4 in this case when-
ever the MDS was employed. The MDS-variates can reduce
the error rate of K-Means, particularly with a block size of
8 × 8. The performance in the space–frequency domain is
better than those in the other two domains. The best perfor-
mance is obtained by the method of MDS + K-Means in the
space–frequency domain with a block size of 8×8. This gave a
good training set with initial group labels for further supervised
segmentation.

To benchmark the performance of supervised segmentation
in this simulation study, true group labels in the training set are
also used as initial group labels to estimate segmentation errors
for different classifiers when the true group labels are avail-
able a priori. Fig. 3 presents the average segmentation error
rates of 50 runs based on the segmentation results of different
classifiers using the true group labels in the training set or the
initial group labels generated by the methods of K-Means and
MDS + K-Means. We summarize comparative results for this
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Fig. 3. The average error rates with one standard deviation bars of 50 runs in segmentation are plotted by the segmentation results of different classifiers using
the true group labels in the training set or the initial group labels generated by the methods of K-Means and MDS + K-Means.

case as follows:

1. Apparently, the SIR versions of the segmentation methods
reduce the error rates significantly.

2. By employing the Gabor features in the space–frequency
domain, the performances for the segmentation methods
have the lower error rates than those with the other two
features in the space or frequency domains.

3. The lowest total errors of 3.82% and 3.22% appear in SIR+
SVMTorch with Gabor features based on the segmentation
results of MDS+K-Means with the block size of 4×4 and
8 × 8, respectively.

4. The SIR can improve the performance of the segmentation
methods to the extent that the simple algorithm of NMC can
perform as well as the complicated algorithms of SVMs do.

5. The error rates of segmentation methods with SIR by the
block size of 8 × 8 are lower than those by the block size
of 4 × 4.

6. The classifier of SVMTorch has the similar performance to
that of LIBSVM.

Thus, the segmentation methods with SIR have the lowest errors
in all cases. These preliminary studies on the simulated image
have shown that the simple algorithm such as the SIR + NMC

Fig. 4. The test texture images (a), (b) and (c) are displayed.

is compatible with the complicated algorithms such as the
SIR + LIBSVM and the SIR + SVMTorch. The results of seg-
mented images by the SIR +NMC, SIR +LIBSVM and SIR +
SVMTorch based on the clustering results of MDS + K-Means
with a block size of 8 × 8 are shown in Fig. 2(b). The bound-
aries of the segmentation are superimposed on the original test
image for visualization.
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Fig. 5. The average error rates with one standard deviation bars of 50 runs in segmentation are plotted for the texture images Fig. 4(a), (b) and (c) based on
the initial group labels generated by K-Means or MDS + K-Means.

5.2. Texture images

We demonstrated the proposed segmentation methods on
three texture images displayed in Fig. 4. There are two groups
in every image, which are denoted by Tf and Tb. One-thousand
samples were randomly selected from one image to form the
training data. The block sizes of 8 × 8, 8 × 8, and 16 × 16 are
chosen for texture images in Fig. 4(a), (b) and (c), respectively.
Fig. 5 shows the average error rates of 50 runs in segmentation
based on the results of K-Means and MDS + K-Means. The
results demonstrated that those segmentation methods with
SIR improved the performance significantly. Fig. 6 show the

segmentation results by the SIR + NMC, SIR + LIBSVM
and SIR + SVMTorch based on the clustering results of
the MDS + K-Means with a block size of 8 × 8 in the
space–frequency domain. The left panel of Fig. 7 shows the
SIR+NMC segmentation for the texture image Fig. 4(c) based
on the MDS + K-Means in the frequency domain. Apparently,
the texture image Fig. 4(c) is difficult to segment because of
the similarity of textures in two regions. We then applied the
iterative SIR + NMC on it in the frequency domain. The seg-
mentation error rates could be reduced from 0.2003 to 0.0272
after 13 iterations as shown in the right panel of Fig. 7. The final
segmented image can locate the target boundary correctly. From
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Fig. 6. The segmentation results by the SIR + NMC, SIR + LIBSVM and
SIR + SVMTorch (from left to right) are displayed based on the clustering
results of the MDS + K-Means for the texture images Figs. 4(a) and 4(b)
with a block size of 8 × 8 in the space–frequency domain.

Fig. 7. The ISIR + NMC segmentation for the texture image Fig. 4(c) is
demonstrated for the initial (left), five (middle) and 13 (right) iterations based
on the MDS + K-Means in the frequency domain.

these simulations, the differences of error rates among succes-
sive iterations are typically decreasing for the ISIR + NMC
method. However, the iterative process may not change much
the segmented results when using the ISIR + LIBSVM and
ISIR + SVMTorch methods. One could try different kernels
and parameters in the training of SVM models to obtain
improved results. For example, the segmentation error rates for
the texture image in Fig. 4(a) could be reduced from 0.0201 to
0.0161 when the SIR + LIBSVM was applied with gaussian
kernel and gamma 0.01 in the frequency domain based on the
clustering results of MDS + K-Means.

6. Empirical results

For the following empirical studies of ultrasound and MR
images, the iterative SIR algorithm was employed.

6.1. Clinical ultrasound images

The ultrasound images are widely used in the clinical
diagnosis for their portability, non-invasiveness and other

Fig. 8. The ultrasound image of (a) a breast and (b) a liver are displayed,
the tumor is the object-of-interest. (b) The MR image of a knee is displayed,
the cartilaginous tissues (the brighter part) is the object-of-interest. The
rectangular box is ROI.

advantages. However, segmentation of ultrasound images is
difficult for its low image quality, intrinsic noisy and textural
properties. We use breast and liver ultrasound images to test
the proposed approach. Fig. 8(a) and (b) show the ultrasound
images of the breast and the liver. They were collected from
the National Taiwan University Hospital. The rectangular box
superimposed on the images are the ROIs and the objects of in-
terest are the tumors. The training data consist of 1000 random
samples from ROI with a block size of 8 × 8. There are two
groups, namely the tumor and the non-tumor. From previous
studies on simulated and texture images, we first employed the
MDS + K-Means to get the initial group labels for the training
data. Then we applied the ISIR + NMC, ISIR + LIBSVM
and ISIR + SVMTorch methods in the space–frequency do-
mains. The numbers of iterations were 4, 3, and 3 for Fig. 8(a)
and 3, 6, and 4 for Fig. 8(b), respectively. Since there are
two groups, only one SIR-variate exists. The segmented re-
sults are superimposed on the original images for comparison
purposes in Fig. 9. One spot was left unfilled in the right bot-
tom corner of the segmented breast images. This may be due
to the effect of speckle noise. Overall, the boundaries of the
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Fig. 9. The final segmentation results from left to right by the ISIR + NMC, ISIR + LIBSVM, and ISIR + SVMTorch on (a) the breast and (b) the liver
ultrasound image are drawn with a block size of 8 × 8 in the space–frequency domains.

Fig. 10. The initial (left) and the final (right, after 22 iterations) segmentation
results of the ISIR + NMC are demonstrated based on the MDS + K-Means
with a block size of 8 × 8 in the space–frequency domain.

desired targets can be successfully located by the proposed
approaches.

6.2. Magnetic resonance images

The merits of MR images are in its high-quality contrasts of
soft tissues, non-invasiveness etc. Nevertheless, the segmenta-
tion remains difficult due to the shape and intensity variation
within the same structure group. Fig. 8(c) shows the MR im-
age of a cross-section of a normal knee with an image size of
512 × 512. The rectangular box is the region of interest that
contains the cartilaginous tissue (the brighter part). The ob-
jective is to segment the cartilaginous from the others. Even
though the knee MR image provides a high contrast of the
tissue against the other tissues, the boundary between the up-
per and the lower cartilaginous tissues is not clear-cut. This
makes the task challenging. For diagnostic purposes, results
are useful for the detection of abnormalities or damages on the
knee. The classical SIR + NMC were applied on the image in
the space–frequency domains and the segmentation results are
shown in Fig. 10(a). It can be observed that the cartilaginous
tissue could not be segmented completely with the connections
remaining intact. We used the iterative SIR + NMC to get the
final segmentation after 22 iterations as shown in Fig. 10(b).
This example demonstrated that by applying the SIR + NMC
iteratively to update the group labels could lead to the desired
results.

The MR images contain a volume of images of the knee. A
total of 20 2D MR images are processed individually. By using
these segmented images, we can construct a 2D projection view
of a knee which shows the thinness of the upper cartilaginous
tissues as shown in Fig. 11. This projection view can detect the
patterns of abnormalities of a knee in order to plan the opera-
tions and visualize the other anomalies. The iterative SIR ap-
proach could adjust the projection directions and reach stable
segmented results to improve the diagnostic potential of medi-
cal imaging.

20

15

10

5

1

17.0

0.0

Fig. 11. The 2D projection view of the thinness of the upper cartilaginous
tissues in a normal kneecap is displayed.

7. Conclusion and discussion

An integrated approach for images segmentation based on
the dimension reduction (MDS and SIR) techniques was in-
troduced in the present study. The K-Means based on MDS-
variates is used for unsupervised clustering for the first stage.
The resulting group labels are the initial estimates for the
supervised segmentation in the second stage. The MDS in
this step helps to reduce the errors of initial labels. The SIR
with NMC or SVMs are used for the approach of ISIR in su-
pervised segmentation. The proposed approach was evaluated
on simulated, texture and clinical images in three feature do-
mains. The findings indicate that the proposed approach signif-
icantly improved the performance of the classifiers. In addition,
Gabor features could lead to successful segmentation results
for complex texture images.

Unlike PCA, the gain by using SIR as a dimension reduc-
tion is that SIR adopts the group information for estimating the
projection directions. These directions exhibit the largest dif-
ference in the group means relative to the within-group vari-
ance and are superior for classification problems [28]. We have
proposed the ISIR method to update the group labels in order
to improve the initial clusters. This suggests that an improve-
ment of segmentation can be achieved through the ISIR method
for finding the stable group memberships that behaves like the
K-Means in the e.d.r. projection space. Hence, this method pro-
vides a simple and effective approach for image segmentation.

In this report, we use (K − 1) dimension for MDS-variates
and SIR-variates to perform the segmentation algorithms of K

regions. Determining the sufficient number of variates that are
involved in the MDS and SIR will be explored in future studies.
The selection of the block size for each image is crucial to the
segmented results. Typically, the smaller the block size is, the
noisier the segment becomes. However, if the block size is too
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large, then the spatial structure can change. The appropriate
block size can be decided by the classification error in the train-
ing set, where the training set can be obtained by hand-labeling
of a medical expert. It is also noted that the different parameter
settings used in SVMs could lead to different segmented re-
sults. For practical purposes, one could train the SVM models
by the training data to learn the parameters. Once the SVM
model is learned, we could use it to predict the test data. The
issue of the stability and robustness of the proposed approach
can be investigated with more images in future studies. In the
future, we plan to investigate the integration of the methods
proposed in the present study and the dynamic SIR model
proposed in our previous study [29] to segment dynamic
images.

Acknowledgments

The authors thank Dr. Chung-Ming Chen at National Taiwan
University Hospital, Dr. Hui-Cheng Cheng at Veterans General
Hospital, Taipei, Taiwan, for providing and explaining the clin-
ical ultrasound and MR images analyzed herein. The authors
also thank the associate editor and referees for their valuable
suggestions and reviews. This research was supported by the
grants from National Science Council at Taiwan, ROC.

References

[1] L.P. Clarke, R.P. Velthuizen, M.A. Camacho, J.J. Heine, M. Vaidyanathan,
L.O. Hall, R.W. Thatcher, M.L. Silbiger, MRI segmentation: methods
applications, Magn. Reson. Imaging 13 (1995) 343–368.

[2] N.R. Pal, S.K. Pal, A review on image segmentation techniques, Pattern
Recognition 26 (1993) 1277–1294.

[3] C.M. Chen, H.H.-S. Lu, Y.C. Lin, An early vision based snake model
for ultrasound image segmentation, Ultrasound Med. Biol. 26 (1999)
273–285.

[4] C.M. Chen, H.H.-S. Lu, An adaptive snake model for ultrasound
image segmentation: modified trimmed mean filter, ramp integration and
adaptive weighting parameters, Ultrasonic Imaging 22 (2001) 214–236.

[5] C.M. Chen, H.H.-S. Lu, K.C. Han, A textural approach based on Gabor
functions for texture edge detection in ultrasound images, Ultrasound
Med. Biol. 27 (2001) 513–534.

[6] C.M. Chen, H.H.-S. Lu, Y.S. Huang, Cell-based dual snake model: a
new approach to extracting highly winding boundaries in the ultrasound
images, Ultrasound Med. Biol. 28 (2002) 1061–1073.

[7] S.C. Amartur, D. Piraino, Y. Takefuji, Optimization neural networks
for the segmentation of magnetic resonance images, IEEE Trans. Med.
Imaging 11 (1992) 215–222.

[8] H. Soltanian-Zadeh, J.P. Windham, A.E. Yagle, Optimal transformation
for correcting partial volume averaging effects in magnetic resonance
imaging, IEEE Trans. Nucl. Sci. 40 (1993) 1204–1212.

[9] T.F. Cox, M.A.A. Cox, Multidimensional Scaling, second ed.,
Chapman&Hall, London, 2001.

[10] J.A. Hartigan, M.A. Wong, A k-means clustering algorithm, Appl. Stat.
28 (1979) 100–108.

[11] K.C. Li, Sliced inverse regression for dimension reduction, J. Am. Stat.
Assoc. 86 (1991) 316–342.

[12] C.H. Chen, K.C. Li, Can SIR be as popular as multiple linear regression?
Stat. Sin. 8 (1998) 289–316.

[13] K.C. Li, High dimensional data analysis via the SIR/PHD approach,
2000, Lecture notes that are available at 〈http://www.stat.ucla.edu/
∼kcli/〉.

[14] R.D. Cook, X. Yin, Dimension-reduction and visualization in
discriminant analysis, Aust. NZ. J. Stat. 43 (2001) 147–200.

[15] C. Cortes, V. Vapnik, Support-vector network, Mach. Learning 20 (1995)
273–297.

[16] C.W. Hsu, C.J. Lin, A comparison of methods for multi-class support
vector machines, IEEE Trans. Neural Networks 13 (2002) 415–425.

[17] C.C. Chang, C.J. Lin, LIBSVM: a library for support vector machines
(Version 2.33), 2002, Software available at 〈http://www.csie.ntu.edu.tw/
∼cjlin/libsvm〉.

[18] R. Collobert, S. Bengio, SVMTorch: support vector machines for large-
scale regression problems, J. Mach. Learning Res. 1 (2001) 143–160.

[19] H.J. Weaver, Applications of Discrete Continuous Fourier Analysis, A
Wiley-Interscience Publication, New York, 1983.

[20] W.S. Torgerson, Multidimensional scaling: I. Theory method, Psycho-
metrika 17 (1952) 401–419.

[21] L. Ferre, Determining dimension in sliced inverse regression and related
methods, J. Am. Stat. Assoc. 93 (1998) 132–140.

[22] K.C. Li, On principal Hessian directions for data visualization dimension
reduction: another application of Stein’s lemma, J. Am. Stat. Assoc. 87
(1992) 1025–1039.

[23] C.H. Chen, K.C. Li, Generalization of Fisher’s linear discriminant
analysis via the approach of sliced inverse regression, J. Korean Stat.
Soc. 30 (2001) 193–217.

[24] J.T. Kent, Discussion of Li (1991), J. Am. Stat. Assoc. 86 (1991)
336–337.

[25] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Springer, Berlin, 2001.

[26] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer, New
York, 1995.

[27] J.C. Platt, N. Cristianini, J. Shawe-Taylor, Large margin DAGs for
multiclass classification, Adv. Neural Inf. Process. Syst. 12 (2000)
547–553.

[28] H.M. Wu, Kernel sliced inverse regression with applications on
classification, Technical Report 2006, Institute of Statistical Science,
Academia, Taiwan.

[29] H.M. Wu, H.H.-S. Lu, Supervised motion segmentation by spatial-
frequential analysis and dynamic sliced inverse regression, Stat. Sin. 14
(2004) 413–430.

About the Author—HAN-MING WU received his B.S. degree in Mathematics from the Tamkang University, Taiwan, in 1995, the M.S. degree in Mathematical
Statistics from the National Chung Cheng University, Taiwan, in 1997, and the Ph.D. degree in Statistics from the National Chiao Tung University, Taiwan, in
2003. He is working as a Postdoctoral Fellow in the Institute of Statistical Science, Academia Sinica, Taipei, Taiwan. His research interests include information
visualization, bioinformatics, medical image processing, and statistical computing.

About the Author—HENRY HORNG-SHING LU received his Ph.D. and M.S. degrees in Statistics from the Cornell University, NY, USA, in 1994 and 1990,
respectively, and his B.S. degree in electric engineering from the National Taiwan University, Taiwan, in 1986. He is a Professor in the Institute of Statistics,
National Chiao Tung University, Hsinchu, Taiwan. His areas of research include statistics, medical images, and bioinformatics.

http://www.stat.ucla.edu/kcli/
http://www.stat.ucla.edu/kcli/
http://www.csie.ntu.edu.tw/cjlin/libsvm
http://www.csie.ntu.edu.tw/cjlin/libsvm

	Iterative sliced inverse regression for segmentation of ultrasound andMR images
	Introduction
	Feature extraction of images
	Unsupervised clustering by K-Means on MDS-variates
	Supervised segmentation
	Iterative sliced inverse regression (ISIR)
	Nearest-mean classifier (NMC)
	Support vector machines (SVMs)

	Simulation studies
	Simulated images
	Texture images

	Empirical results
	Clinical ultrasound images
	Magnetic resonance images

	Conclusion and discussion
	Acknowledgments
	References


