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Abstract: Ultrasound imaging is an important tool for early detection and
regular check-ups of liver cirrhosis. The diagnosis can be performed by
analysis of echo textures of the liver and of the accompanying spleen. The
simultaneous comparison of liver and spleen images for the same person at
the same system setup can be used to reduce subject, machine, and system
variations. This study aims to investigate the computer-aided diagnosis of
features derived from the ultrasound images of livers and the accompanying
spleens. We will incorporate the techniques of an early vision model, di-
mension reduction, fractal dimension, nonparametric discriminant rules by
kernel density estimation and classification trees to improve the statistical
analysis methods. These methods are tested by the clinical images collected
at National Taiwan University Hospital with 64 normal livers and 30 cir-
rhosis ones. The smallest overall bootstrap prediction error is found to be
5.29% by these new methods.
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1. Introduction

For many years, hepatic cancers, chronic liver diseases, and liver cirrhosis
have remained one of the most popular causes of death in Taiwan according
to statistics by the Department of Health2. Therefore, it is important to have a
reliable diagnosis for the diffuse liver diseases in early detection and regular check
ups.

Ultrasound imaging systems are used to diagnose diffuse liver diseases because
of their non-invasiveness, ability to do real-time scanning, low cost, and versatil-
ity. However, due to the heterogeneous characteristics of ultrasound imaging sys-
tems, previous studies on computer-assisted diagnosis usually only consider one

2See http://www.doh.gov.tw/
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system (Parker et al., 1988; Momenann et al., 1988; Garra et al., 1989; Hartman
et al., 1993; Sun et al., 1996; Lu et al., 1999; Pavlopoulos et al., 2000). Moreover,
many parameters related to the physical instrument of ultrasound imaging are
subject to a fixed setup. This limitation has become a serious problem when
one attempts to diagnose a variety of patients with various tissue structures by
different system setups.

This study is thus motivated to develop a more robust computer-aided di-
agnosis system for diagnosing liver cirrhosis on ultrasound images based on the
diagnosis principle employed by the medical doctors at the National Taiwan Uni-
versity Hospital (NTUH). One example of normal and cirrhosis cases is demon-
strated in Figure 1. We can use the echo texture of the same person’s spleen as
a reference in making a diagnosis, which alleviates the limitation imposed on the
algorithms by the discrepancy of human bodies, ultrasound systems, and param-
eter setups. We also take into account the periodic pattern or the human early
vision model in an attempt to mimic the natural way that a medical doctor makes
the diagnosis (Chen et al., 2000, 2001; Chen and Lu, 2001; Chen et al., 2003).
Advanced data mining techniques, including dimension reduction (Li, 1991; Li et
al., 2000), fractal dimension (Cherkassky and Mulier, 1998; Akiyma et al., 1990),
the nonparametric discriminant rule by kernel density estimation (Fortin et al.,
1992), and the classification tree (Silverman, 1986; Breiman et al., 1984), are in-
tegrated to explore features and improve prediction of computer-aided diagnosis
in this study.

The methods and materials in this study are described in Section 2. Empirical
results and comparisons are provided in Section 3. Conclusions and discussions
are given in Section 4.

2. Methods and Materials

Instead of applying features related to the physical setups of ultrasound im-
ages for livers, like attenuation coefficients, statistics of diffuse (random), and
specular (structural) backscatter intensities in literature (Parker et al., 1988;
Momenann et al., 1988; Garra et al., 1989; Hartman et al., 1993; Lu et al., 1999),
we consider features that are robust to the system setups in comparing the ultra-
sound images of liver and of the accompanied spleen. Features in the space and
frequency domains are considered to represent the spatial and periodic pattern,
including moving blocks of images, the Fourier coefficients, and an early vision
model by Gabor filter banks (Chen et al., 2000, 2001; Chen and Lu, 2001; Chen
et al., 2003). Selected statistics, dimension reduction (Li, 1991; Li et al., 2000;
Cherkassky and Mulier, 1998) and fractal dimension (Sun et al., 1996; Pavlopou-
los et al., 2000; Akiyma et al., 1990; Fortin et al., 1992) are integrated to extract
the major variations of echo textures. Classification rules of kernel density
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(a) (b)
Figure 1: There are similar and fine echo-textures for (a) the liver and (b) the accompanied
spleen for that person with a normal liver in part I. Another person with liver cirrhosis has
coarser echo-texture in (a) the liver than that in (b) the accompanied spleen in part II.

Liver Spleen Liver

Feature extractions

Space domin Frequency domain Space-frequency domain

Selected statistics, dimension reduction and fractal dimension

Classification rules
(KDE or Classification trees)

Results

Figure 2: The flowchart of our CAD for liver cirrhosis by ultrasound images is displayed.

estimation and the classification tree (Silverman, 1986; Breiman et al., 1984;
Hand, 1997) are then applied to discriminate normal and cirrhosis cases. The
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flowchart of analysis is displayed in Figure 2. The block ‘Liver/Spleen’ represents
the input of liver and spleen images simultaneously. In order to compare the
results of simultaneous comparisons of liver/spleen with the analysis results of
liver only, similar procedures of analysis are applied solely to the liver images.
Hence, there is another block for ’Liver’ in Figure 2, which denotes unique input
of liver images. Finally, these two strategies can be combined in Figure 2.

I. A normal case (Figure 1a),

II. A cirrhosis case (Figure 1b).

The test images were clinical images selected by medical doctors at NTUH and
captured from a Toshiba SSA-380A clinical ultrasound imaging system through
a frame grabber card. Images were from the RGB output of the Toshiba SSA-
380A and were captured by the frame grabber card, Meteor-II card, made by
the Matrox Electronic System Ltd. The captured image was stored in the BMP
format with 8-bit resolution for each color channel. There were 94 samples,
with 64 normal livers and 30 cirrhosis ones diagnosed by experienced medical
doctors, collected from clinics at NTUH from August 1998 to January 1999.
Two typical examples are given in Figure 1. Experienced physicians select one
region of interest (ROI) of the liver image and the corresponding ROI of the
spleen image to compare of echo-textures. The system setups and depths of both
ROI’s are the same to control the variations of machine and system setups. The
sizes of both ROI’s are the same for a liver and the accompanied spleen of the
same person, which are denoted by M and N . For different persons or different
scans, the sizes of the ROI’s may be different due to the varying sizes of echo
images. The purpose of this study is to develop computer-aided diagnosis that can
automatically distinguish the echo textures of livers and the accompanied spleens.
To avoid bias caused by physicians, the selection of ROI’s should occur before
the diagnosis is known. Because textures are local properties, the intensities of
neighboring pixels are used as feature vectors in the space domain. For instance,
the picture elements (pixels) in a block with size equal to m by n, like 16 by
16 or 8 by 8, can be formed as a feature of the central pixel, as illustrated in
Figure 3 and plotted in Figure 4. But this kind of feature in the space domain is
very sensitive to the shifting of the center even if the texture structure remains
the same. Hence, it is necessary to consider other kinds of transformation to
preserve the textures in the presence of translated centers. In order to have more
distinguishable feature vectors, the absolute value of Fourier transforms and an
early vision model by Gabor filter banks (Chen et al., 2000, 2001; Chen and Lu,
2001; Chen et al., 2003) have been employed to construct the feature vectors in
the frequency and the space-frequency domains, as illustrated in Figures 5 and
6.
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I. For the normal case in Figure 1 (Figures 3a and 3b):

II For the cirrhosis case in Figure 1 (Figures 3c and 3d):

   

   

(a) (b)

(c) (d)

Figure 3: Part I: (a) A local block of a normal liver and (b) a local block of the accompanied
spleen are displayed in the part I of Figure 1. Part II: (a) A local block of a cirrhosis liver
and (b) a local block of the accompanied spleen are illustrated in part II of Figure 1.

 

(a) (b)

 

(c) (d)

Figure 4: Plots of the feature vectors in those four local blocks of Figure 3 in the space
domain.
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I. For the normal case in Figure 1 (see Figures 4a and 4b):

II. For the cirrhosis case in Figure 1 (see Figures 4c and 4c):

(a) (b)

(c) (d)

 

 

Figure 5: Plots of the feature vectors in those four local blocks of Figure 3 in the frequency
domain

I. For the normal case in Figure 1 (see Figures 5a and 5b):

II. For the cirrhosis case in Figure 1 (see Figures 5c and 5d):

(a) (b)

(c) (d)

 

 

Figure 6: Plots of the feature vectors in those four local blocks of Figure 3 in the space-
frequency domain.
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I. For the normal case in Figure 1 (see Figures 6a and 6b):

II. For the cirrhosis case in Figure 1 (see Figures 6c and 6d):

Suppose the ROI is of size by , and a local block in the ROI is by n. There
are (M −m + 1)× (N −n + 1) moving blocks in total. Because the dimension of
each feature vector computed for each block is high, dimension reduction would
be required to alleviate the curse of dimensionality. Also, because the data size,
i.e., (M = m+1)× (N −n+1), is large and varying, data reduction to the same
size for all images would be necessary for the purpose of comparison. Principal
component analysis (PCA) and sliced inverse regression (SIR) are applied in
this study (Li, 1991; Chen et al., 2000; Cherkassky and Mulier, 1998). SIR
is a weighted PCA that employs the information of classification labels, which
leads a more effective dimension reduction for classification (Li, 1991; Chen et
al., 2000). Several selections of statistics are also applied in order to reduce the
data size while preserving statistical information such as mean, median, standard
deviation (STD), interquartile range (IQR), coefficient of variation (CV, which
is defined to be standard deviation divided by mean), skewness coefficient (SC),
and kurtosis coefficient (KC). In particular, it is found that the sum of the first
and second largest eigenvalues in our data set is greater than 80% of the total
sum of all eigenvalues. Hence, the leading two eigenvectors are used as the major
projection directions. Twenty-one dimension reduction techniques investigated in
this study are summarized in Table 1. Take method 4 in Table 1 as an example;
the feature vectors are projected onto the first PCA directions of liver and spleen
in the frequency domain. Suppose the size of a local block is 8 by 8. Because the
image intensity is real-valued, the absolute value of a two-dimensional Fourier
transform is symmetric about the origin. Moreover, the DC components are
affected by the setup of ultrasound imaging and can be removed. Since the origin
is located at the fifth row and the fifth column after the two-dimensional fast
Fourier transform of a 8 by 8 block of a real-valued image, we will only keep the
first four rows except those four DC components at the fifth column. The size
of feature vector becomes 28 by 1. For an ROI of M × N pixels in a liver (or a
spleen), there are (M − 8 + 1) × (N − 8 + 1) blocks of feature vectors. Applying
PCA on these feature vectors of a liver (or a spleen), the leading eigenvector with
size of 28 by 1 is obtained. The inner products of the feature vectors and the
largest eigenvector generate (M − 7)× (N − 7) values. The dimension is reduced
to 1 now.
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Table 1: Twenty-one possible dimension reduction techniques are investigated in this study

Projection onto the PCA directions of livers (and spleens):

Space domain:
1: onto the first PCA direction
2: onto the second PCA direction
3: onto the leading two PCA direction
Frequency domain:
4: onto the first PCA direction
5: onto the second PCA direction
6: onto the leading two PCA direction
Space-frequency domain:
7: onto the first PCA direction
8: onto the second PCA direction
9: onto the leading two PCA direction

Projection onto the PCA directions of spleens:
Space domain:
10: onto the first PCA direction
11: onto the second PCA direction
12: onto the leading two PCA direction
Frequency domain:
13: onto the first PCA direction
14: onto the second PCA direction
15: onto the leading two PCA direction
Space-frequency domain:
16: onto the first PCA direction
17: onto the second PCA direction
18: onto the leading two PCA direction

Projection onto the SIR directions of livers and spleens:
19: space domain
20: frequency domain
21: space-frequency domain

The histograms of the projection values by method 4 for a normal liver and a
cirrhosis liver in Figure 1 are displayed in Figure 7. It is evident that a normal case
has similar histograms of projected feature vectors for echo textures in liver and
the accompanied spleen. On the contrary, the histograms for a cirrhosis liver and
the accompanied spleen are different. The statistics like the standard deviation
can then be used to distinguish these two cases from each other. If the second
largest PCA direction is used for projection in the method 5, the histograms
for normal and cirrhosis cases are displayed in Figure 8. The histograms for a
cirrhosis liver are quite distinguishable when they are compared with those for a
normal one. Statistics like the mean can be used for distinction in this example.
The scatter plots for the projections onto the leading two PCA directions in the
frequency domain of method 6 are displayed in Figure 9.

I. For the normal case in Figure 1 (see Figure 7, left panel):

II. For the cirrhosis case in Figure 1 (see Figure 7, right panel):
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Figure 7: The histograms of projected feature vectors in Figure 1 onto the first PCA directions
of liver and spleen in the frequency domain of method 4. Part I: (a) The histogram for a
normal liver, (b) the histogram for the accompanied spleen, and (c) the combination of (a)
and (b) are displayed. Part II: (a) The histogram for a cirrhosis liver, (b) the histogram for
the accompanied spleen, and (c) the combination of (a) and (b) are demonstrated.
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I. For the normal case in Figure 1 (see Figures 8, left panel):

I.I For the cirrhosis case in Figure 1 (see Figures 8, right panel):

   
Figure 8: The histograms of projected feature vectors in Figure 1 onto the second PCA
directions of liver and spleen in the frequency domain of method 5. Part I: (a) The histogram
for a normal liver, (b) the histogram for the accompanied spleen, and (c) the combination of
(a) and (b) are displayed. Part II: (a) The histogram for a cirrhosis liver, (b) the histogram
for the accompanied spleen, and (c) the combination of (a) and (b) are illustrated.
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I. For the normal case in Figure 1 (see Figure 9, left panel):

I.I For the cirrhosis case in Figure 1 (see Figure 9, right panel):

   
Figure 9: The scatter plots of projected feature vectors in Figure 1 onto the leading two
PCA directions of liver and spleen in the frequency domain of method 6. Part I: (a) The
2D scatter plot of a normal liver and the accompanied spleen as well as (b) the 3D scatter
plots of a normal liver and the accompanied spleen are displayed. Part II: (a) The 2D scatter
plot of a cirrhosis liver and the accompanied spleen as well as (b) the 3D scatter plots of a
cirrhosis liver and the accompanied spleen are demonstrated.

Because the echo-textures of spleens in normal and cirrhosis cases are similar,
we can also consider the PCA directions of spleens for projection and simultaneous
comparisons in methods 10-18. They will be compared with those in methods 1-9.
Furthermore, linear combinations of statistics of projected feature vectors are also
sought using SIR for classification purposes by incorporating information from
classification labels. The linear combination of linear and nonlinear features can
even improve the classification and prediction due to the adjustments of weights
by class information such that the linear combination of linear and nonlinear
features can distinguish two classes effectively (Li, 1991; Li et al., 2000).

If the class information of the whole data set is used in the selection of features
or the design of classifiers, then the prediction errors by the resubstitution and
the hold-out methods are often biased (Sahiner et al., 2000). To reduce this kind
of bias when we use the class information in feature selection (with SIR) and dis-
criminant rules (with the kernel density estimation or the classification tree), we
apply the leave-one-out (Jackknife) and bootstrap methods (Efron, 1983; Efron
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and Tibshirani, 1993) during the selection of features and the design of classi-
fiers. The leave-one-out method deletes one sample each time. The remaining
samples are used to select features and design classifiers for a CAD system. Then,
the deleted sample is used to find out the prediction error of this CAD system.
The process repeats, and the prediction error of this CAD system is found. The
bootstrap method generates re-samples, like 1000 re-samples in this study, and
they are used to select features and design classifiers. The prediction errors from
bootstrap data set, which do not contain the sample being predicted, are then
used to obtain the ‘.632 bootstrap estimator’ of prediction error of this CAD
system (Efron, 1983; Efron and Tibshirani, 1993). That is, the SIR method and
classifiers are a part of the leave-one-out strategy and/or bootstrapping in our
studies. Hence, the bias of the prediction errors found by the linear combination
of the SIR method and the classifiers are minimized.

Because the distribution of feature vectors may not be Gaussian distributed,
the nonparametric discriminant rule by kernel density estimation (KDE) with a
Guassian kernel (Silverman, 1986) or the classification tree (Breiman et al., 1984;
Hand, 1997) is used to perform the last classification step. Since the resulting
classifiers are nonlinear, there are no standard tests of stepwise feature selection,
like F-to-enter and F-to-remove tests, can be applied here. The prediction errors
estimated by the leave-one-out and bootstrap methods are used as a guideline to
select the features forwardly.

Fractal dimension has been studied to be useful for classification of texture
images and ultrasound images in literature (Sun et al., 1996; Pavlopoulos et al.,
2000; Akiyma et al., 1990; Hand, 1997). Hence, this will be considered as a
possible feature to be included in our CAD system. The fractal dimension is
related to the Hurst coefficient for a fractional Brownian motion (or surface)
(Mandelbrot, 1985). The maximum of absolute deviation of image intensities
within a neighboring block of varying size can be used to estimate the variance
within that block. The relationship between the estimated variance and size gives
the estimate of Hurst coefficient (Russ, 1990). This fast computation method of
fractal dimension is used in this study. Other methods are discussed in (Peitgen
et al., 1992; Wornell, 1996; Bauer and Kohavi, 1999). The empirical results
and comparisons of these methods in clinical images will be reported in the next
section.

3. Empirical Results and Comparisons

(1) L/S (liver/spleen): We start with simple features and statistics to distinguish

the differences of echo textures for normal and cirrhosis livers with the reference
of the accompanied spleens. Empirical studies for the clinic images are studied
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for methods 1-12 in Table 1 with two block sizes, 8 by 8 and 16 by 16. The non-
parametric discriminant rule by kernel density estimation (KDE) is used now.
The smallest overall bootstrap prediction errors are marked with stars and re-
ported in Table 2 for the feature vectors in the space domain. Thus, the smallest
overall bootstrap prediction error can be reduced to 16.04% by the simultaneous
comparison with method 12 in Table 1. The false positive and negative errors
are also reported in Table 2 that answer another perspective when one kind of
error, like the misdiagnosis of cirrhosis livers, is more serious than the other. It
is also found that the prediction errors are smaller for the features derived from
the 8 by 8 block size both in the space and the frequency domains. On the other
hand, the prediction errors are smaller for the features computed from the 16 by
16 block size in the space-frequency domain used in this study.

Table 2: The performance of the method that has the smallest overall bootstrap prediction
error in percentage found in the space domain, in which the best one is marked with a star.

Statistics Error Rates Jackknife Overall Bootstrap Overall

Liver Mean -
Spleen Mean Normal 31.15 34.04 31.10 32.18

Cirrhosis 39.39 34.18
Liver Median -
Spleen Median Normal 31.15 32.98 28.88 31.21

Cirrhosis 36.36 35.51
Liver STD /
Spleen STD Normal 21.31 23.40 20.40 23.51

Cirrhosis 27.27 29.28
Liver IQR /
Spleen IQR Normal 24.59 23.40 22.29 21.70

Cirrhosis 21.21 20.61
Liver CV /
Spleen CV Normal 1.64 31.91 1.81 27.50

Cirrhosis 87.88 75.01
Liver SC -
Spleen SC Normal 37.70 46.81 31.41 39.45

Cirrhosis 63.63 54.31
Liver KC -
Spleen KC Normal 55.74 42.55 54.00 42.17

Cirrhosis 18.18 20.32
Linear
Combination Normal 9.84 11.70 12.73 16.04*

Cirrhosis 15.15 22.16

Method 12:
Feature extraction: Space domain.
Block size: 8 by 8.
Dimension reduction: Projection onto the leading two PCA directions of spleens.

It is noted that the methods of projection onto individual PCA directions or
spleen PCA directions in the space or the frequency domains with 8 by 8 blocks
have small overall prediction errors, which are 16.04% and 16.84%. For simplicity,
we will focus on methods 1-6 and 10-15 in the further investigation. The smallest
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overall bootstrap prediction errors are reported in Table 3. The smallest overall
prediction errors in the space and the frequency domains are marked with stars.
Assuming binomial distribution, 95% confidence intervals of prediction error rates
for those smallest rates found can be computed. From these empirical results, we
observe the following comparison results.

Table 3: The smallest overall prediction errors in percentage found among projection methods
1-6 and 7-12 with or without fractal dimension (f) are reported. The classification rules are
based on KDE. The smallest one in each category in the space and the frequency domains
are marked with stars, respectively. The results for those methods that do not produced
smallest overall prediction errors are omitted for clarity of tabulation.

(1) Feature: Feature:
L/S L/S + f

Prediction Error: Prediction Error:

Proj. Bootstrap Jackknife Bootstrap Jackknife
2 21.83 22.34 14.67* 13.83 *space
3 17.05 14.98 17.54 19.15
5 24.36 24.47 20.62 21.28
6 22.42 23.40 19.22 22.34
12 16.04* 11.70 *space 15.68 15.96
14 16.84* 17.02 *freq 14.67* 13.83 *freq.

(2) Feature: Feature:
L(S) L(S) + f

Prediction Error: Prediction Error:

Proj. Bootstrap Jackknife Bootstrap Jackknife
2 18.66 19.15 18.70 19.15
3 10.59* 11.70 *space 10.59* 11.70 *space
5 21.88 22.34 22.28 23.40
6 13.30* 13.83 *freq. 13.54* 15.96 *freq.
12 11.67 17.02 11.67 12.77
14 27.60 30.85 25.31 26.60

(3) Feature: Feature:
L(S) + L/S L(S) + L/S + f

Prediction Error: Prediction Error:

Proj. Bootstrap Jackknife Bootstrap Jackknife
2 19.87 21.28 19.87 21.28
3 12.58 14.89 12.58 14.89
5 13.50* 12.77 *freq. 14.16 13.83
6 16.30 18.09 16.11 18.09
12 10.78* 12.77 *space 10.78* 12.77 *space
14 14.16 13.83 9.98* 9.57 *freq.

(2) L/S vs. L/S + f (fractal dimension):

From part (1) of Table 3, fractal dimension can reduce the smallest overall
bootstrap prediction errors for the simultaneous comparisons of levers and spleens
in both space and frequency domains, from 16.04% and 16.84% to 14.67%.

(3) L(S)(+f) vs. L/S(+f):
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The smallest overall bootstrap prediction errors using mainly the statistics of
echo textures for liver images are smaller then those by simultaneously comparing
livers and spleens based on part (1) and (2) of Table 3. Projection methods 3 and
6 using the projection onto the leading two PCA directions of livers produce the
overall bootstrap prediction errors of 10.59% and 13.30%, which are the smallest
among the test methods in space and frequency domains. These prediction errors
remain the same no matter whether fractal dimensions are used in this study.
These results suggest that the statistics of echo textures for liver images are very
effective by our methods and these features shall be further combined with the
simultaneous comparisons of livers and spleens to reduce the prediction errors.
These are studies and investigated next.

(4) L(S) + L/S(+f):

The results for using the echo textures of livers as well as the simultaneous
comparisons of livers and spleens are reported in part (3) of Table 3. The smallest
overall bootstrap prediction errors occur at 9.98% when these features and fractal
dimensions are used in the frequency domain. Next, we would like to investigate
the performance if we replace the nonparametric classification rule of KDE by
classification trees.

Table 4: The smallest prediction errors in percentage found by KDE with different methods
using all features in both of the space and the frequency domains.

(1) L(S) + L/S
Feature extraction: Space + Frequency domain
Prediction errors of linear combination:
Proj. Bootstrap Jackknife

1&4 7.82 7.45
2&5 10.13 9.57
3&6 29.34 24.47
10&13 9.78 9.57
11&14 7.34 7.45
12&15 29.23 18.09

(2) L(S) + L/S + f
Feature extraction: Space + Frequency domain
Prediction errors of linear combination:
Proj. Bootstrap Jackknife

1&4 7.81 7.45
2&5 9.35 8.51
3&6 29.87 18.85
10&13 9.80 9.57
11&14 5.29* 4.25*
12&15 29.64 18.09
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Table 5: The prediction errors in percentage of false positives and negatives for those methods
that use all features, statistics, and fractal dimension in the part (2) of Table 4.

(a) Feature extraction: Space + frequency domains.
Dimension reduction: Projection onto the first PCA directions of livers and spleens.
Statistics: linear combination.
Error Rates Bootstrap Overall Jackknife Overall

Normal 6.78 7.81 6.56 7.45
Cirrhosis 9.71 9.09

(b) Feature extraction: Space + frequency domains.
Dimension reduction: Projection onto the second PCA directions of livers and spleens.
Statistics: linear combination.
Error Rates Bootstrap Overall Jackknife Overall

Normal 8.81 9.35 8.20 8.51
Cirrhosis 10.35 9.09

(c) Feature extraction: Space + frequency domains.
Dimension reduction: Projection onto the leading two PCA dirctions of livers and spleens.
Statistics: linear combination.
Error Rates Bootstrap Overall Jackknife Overall

Normal 31.68 29.87 21.31 18.85
Cirrhosis 26.52 16.39

(d) Feature extraction: Space + frequency domains.
Dimension reduction: Projection onto the first PCA directions of spleens.
Statistics: linear combination.
Error Rates Bootstrap Overall Jackknife Overall

Normal 6.50 9.80 6.56 9.57
Cirrhosis 15.89 15.15

(e) Feature extraction: Space + frequency domains.
Dimension reduction: Projection onto the second PCA directions of spleens.
Statistics: linear combination.
Error Rates Bootstrap Overall Jackknife Overall

Normal 2.81 5.29* 1.64 4.26*
Cirrhosis 9.86 9.09

(f) Feature extraction: Space + frequency domains.
Dimension reduction: Projection onto the leading two PCA directions of spleens.
Statistics: linear combination.
Error Rates Bootstrap Overall Jackknife Overall

Normal 2.81 5.29 16.39 18.09
Cirrhosis 9.86 21.21

(5) Classification trees:

The Jackknife prediction errors of classification trees in various methods are
evaluated. Based on the comparisons of prediction errors with the corresponding
errors in Table 3, classification trees do not reduce prediction errors more than
KDE does in our studies. More advanced techniques in classification trees, like
bagging, boosting, and other variants, would be necessary to reduce the predic-
tion errors of classification trees with more computation efforts (Dietterich, 2000;
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Haralick et al., 1973) in future research.

(6) Space + Frequency domains:

The results of combining all feature vectors and statistics in the space and
frequency domains with KDE are reported in Table 4. The smallest overall boot-
strap prediction error is reduced to 5.29% when methods 11 and 14 are used with
all feature vectors, statistics, and fractal dimensions in the space and frequency
domains. Again, the classification trees result in higher Jackknife prediction er-
rors in our studies. The confidence interval of the lowest prediction error of 5.29%
is [0.76%, 9.81%] by assuming binomial distribution. This is compatible to the
performance of previous approaches in terms of correct classification rates of cir-
rhosis, e.g. 88.00%-97.30% (Hartman et al., 1993), 66.75% (Sun et al., 1996),
68.00%-80.00% (Pavlopoulos et al., 2000). However, it should be noted that pre-
vious approaches required all images be acquired with the same system setup,
but this constraint has been relaxed in our method. That is, our method is more
robust to varying subject, machine and system setups than previous approaches.
The prediction errors of false positives and negatives for those methods that have
smallest overall prediction errors in the part (2) of Table 4 are reported in Table
5. This provides a basis for the selection of methods when asymmetric loss is
considered.

4. Discussions and Conclusions

We have constructed a CAD system that uses advanced data mining tech-
niques to compare echo textures of livers and their accompanied spleens as medi-
cal doctors practice at National Taiwan University Hospital. We start with simple
methods to construct this CAD system and gradually increase the complexity by
introducing new features and analysis tools when they are shown to be useful in
reducing the prediction errors for clinical images. The smallest bootstrap predic-
tion error is found to be 5.29% by combining dimension reduction, KDE, derived
features of fractal dimension, liver textures, and simultaneous comparisons of
echo textures for livers vs. the accompanied spleens. Intermediate improvements
of different components are also evaluated and reported in this study. Other fea-
tures (Parker et al., 1988; Momenann et al., 1988; Garra et al., 1989; Hartman et
al., 1993; Lu et al., 1999;Wu and Chen, 1992; He andWang, 1990) and analysis
methods (Sun et al., 1996; Pavlopoulos et al., 2000; He et al., 1989; Specht, 1990)
can be explored and integrated into our current CAD system in the future. For
instance, more advanced techniques in classification trees, like bagging, boosting,
and other variants, may be used to reduce the prediction errors of classification
trees with extra computational costs (Bauer and Kohavi, 1999; Dietterich, 2000).
Other methods for computing the fractal dimension (Peitgen et al., 1992; Korvin,
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1992; Wornell, 1996) are of interest in comparisons. More sophisticated methods
to analyze the information in the space-frequency domains can be investigated.
In this study, experienced medical doctors at National Taiwan University Hos-
pital perform the diagnosis of cirrhosis. It is the aim of our future studies to
collect biopsies or CT/MR scans. More inputs features of related clinical tests
and clinical information for this CAD system will certainly help to improve these
methods in practice.
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