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A Novel Statistical Method for Automatically
Partitioning Tools According to Engineers’ Tolerance

Control in Process Improvement
Kevin Kai-Wen Tu, Jack Chao-sheng Lee, and Henry Horng-Shing Lu

Abstract—In the semiconductor industry, tool comparison is a
key task in yield or product quality enhancements. We develop
a new method to automatically partition tools. The new method
is called tolerance control partitioning (TCP). The advantages of
TCP include 1) taking into account of unbalanced tool usage in
manufacturing processes; 2) further partitioning these tools into
several homogenous groups by related metrology results instead of
detecting only the significant difference; and 3) partitioning these
tools according to engineers’ tolerance controls to avoid too many
groups with small differences. TCP also could be applied in all sim-
ilar cases such as experimental recipe or material comparisons.
Therefore, using TCP, engineers could speed up yield or product
quality ramping.

Two simulation cases illustrate the advantages of TCP method.
We also applied TCP to two real cases for yield and Cp/Cpk en-
hancement in the semiconductor industry. The results confirm the
practical feasibility of this method.

Index Terms—APC, Bayesian fit, CART, , , data mining,
process capability, reversible jump Markov chain Monte Carlo,
yield enhancement.

I. INTRODUCTION

T HE IMPORTANCE of semiconductor technology in
today’s world cannot be exaggerated. Semiconductor

devices are essential components in all electronic products.
However, since building a modern wafer fabrication facility
costs approximately $3 billion, rapid yield ramp to volume
production is becoming an increasingly important source of
competitive advantage in the ultra-competitive world of semi-
conductor manufacturing [1].

Tool comparison is one key task for engineers in facilitating
yield ramping. The tools could be compared using metrology re-
sults from processed lots. The metrology results could include
physical or electrical data, such as film thickness, film unifor-
mity, critical dimension, overlay, defect particle count, voltage,
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current, and wafer sort. Because engineers must analyze mas-
sive amounts of data in a very time-consuming fashion [2], ef-
fective and efficient analysis in comparing tools is critical to
rapidly ramping up yield.

ANOVA and Kruskal–Wallis [3] tests are the two most
common methodologies used in statistical analysis [2]. These
tests can show engineers where statistical differences exist.
However, after finding the significant differences among tools,
engineers still need to partition these tools into several ho-
mogenous groups to identify the best or the most problematic
groups of tools to enhance product quality or to reject the
worst tools, respectively [4]–[6]. Other disadvantages of using
these statistical tests are that 1) nonuniform usage in most
tools results in unbalanced data and diminishes the accuracy of
these statistical methods [7] and 2) statistical significances may
detect small differences as large sample sizes [3], [7].

Data mining [8], [9] using a classification and regression
tree (CART) [10] or neural networks [11] are other popular
methods. Many commercial engineering data analysis tools use
these functions for yield enhancements. They help engineers
partition tools into several homogenous groups and identify
the best or worst groups of tools. However, it is difficult for
engineers to set up related parameters for the CART or neural
network methods with respect to engineering tolerances, since
different engineers’ decisions may result in different partitions
[10].

To sum up, there are three major challenges in such tasks as
follows: 1) to take into account unbalanced tool usage in man-
ufacturing processes; 2) to further partition these tools into sev-
eral homogenous groups by related metrology results instead of
detecting only the significant differences; 3) to partition these
tools according to engineers’ tolerance controls to avoid too
many groups with small differences.

The Bayesian approach is one method that solves the un-
balanced data issue. Chaloner [12] got better estimations of
variance components by using the Bayesian approach for
unbalanced data cases. However, when different partitioning
results are shown, the partition models are different. Therefore,
our problem is related to model determination. The reversible
jump Markov chain Monte Carlo (RJMCMC) proposed by
Green [13] is a new and powerful method to deal with Bayesian
model determination problems. Applications of RJMCMC
include change point problems and factorial experiments [13],
mixture problems [14], and so forth. Nobile and Green [15]
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also applied this method in a factorial experiment by using
mixture modeling. Bergeret and Gall [16] applied RJMCMC
to detect the change point of a yield trend in semiconductor
manufacturing and also to solve the yield issue when a failure
occurs at a problematic process stage and there are different
yield performances before and after the failure time.

We will further develop the TCP method by applying
RJMCMC to partition tools into several homogenous groups
for identifying problematic or golden tools, and we also build a
new connection between statistical parameters and engineering
tolerances. Using this new connection, the TCP method can
automatically partition tools into several homogenous groups
according to engineering tolerances. We also provide guidelines
to choose initial values of parameters and hyperparameters to
facilitate the practice of TCP in the semiconductor industry and
other industries. As a result, engineers will be able to easily
practice TCP after setting up their tolerances using their expe-
rience, knowledge or product specifications. This will provide
more valuable information about tool comparisons that will
help engineers enhance product yield and process capability.

The remainder of the paper is structured as follows. In
Section II, we introduce our model in detail. Furthermore, we
will provide guidelines for the choice of prior parameters and
hyperparameters in practice. In Section III, we provide two
simulation cases to illustrate the advantages of the TCP method.
Here, we will also compare the partitioning results of tolerance
controls with the pruning results of the CART method. In
Section IV, we analyze two real illustrative examples in the
semiconductor industry including 1) yield enhancement and
2) Cp/Cpk enhancement and propose an idea to integrate TCP
with statistical dashboard [2] and automatic process control
(APC) [17]–[19], respectively. In Section V, extensions of the
TCP method are discussed.

II. METHODOLOGY

A. Modeling a Partition Problem

For each observation, denotes the response variable such
as yield and denotes the categorical predictor with cate-
gorical levels such as tools. The conditional distribution of
given is, , where if is the
th tool, and is the unknown parameter vector.

The TCP method is used to partition the tools into several ho-
mogenous groups (that is, partition into sev-
eral homogenous groups). And the random effects of the tools

are the same if the tools belong to the same
group.

A partition of tools is a collection of
subsets of , which we call groups with

and for . The degree
of partition is the number of groups into which tools are
divided by . Within each group , the parameter for

is drawn independently from the same normal distribution
with hyperparameters and , that is, ,

, , .

Furthermore, using a Bayesian approach, another prior dis-
tribution for our model takes ,

, where the ’s are conditionally independent given
.

is distributed independently as scaled inverse Chi squared
, where in which the

parameter would be defined by engineers to stand for the ac-
ceptable difference between tools.

is distributed independently as scaled inverse Chi squared
.

Finally, following Consonni and Veronese [20], is indepen-
dent and its prior distribution is taken as

, where is the degree of partition .
When we have tools, the th tool has observations for

. We denote as the response variable of
the th observation of the th tool for , and

. The joint distribution of all variables will be
specified by

where , , and
, for , , and .

Based on the above Bayesian models for our problem,
we need to estimate the values of the unknown priors

with pre-determined hyperparameters
and , and parameters , , , and . In Section II-C, we
will provide the guidelines to set up initial values of these
hyperparameters and , and parameters , , , and in
order to facilitate the method.

We apply RJMCMC to get the stationary posterior dis-
tribution of the unknown priors . By the
RJMCMC algorithm, we could construct a Markov chain that
converges to a unique stationary posterior distribution of the
priors , and then estimate the unknown priors

by the modes of the stationary posterior distri-
butions, respectively.

B. The TCP Algorithm for Partition Problems

Please refer to [13] and [21] to see the algorithm and further
details of RJMCMC. The TCP algorithm is as follows.

1) Randomly choose one of the five prior parameters to
update.

2) If choosing to update the partition , we could also
randomly choose one of birth and death move types.
2.1) If choosing birth move type, one group is increased

from its current partition. Then we randomly select
one group which contains at least two tools to
split randomly into two groups and calculate the
acceptance probability [13], based on current and
new partitions, and . Choose a random variable
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from Uniform (0, 1). If , then accept the
new partition , else keep the current partition .

2.2) If choosing death move type, one group is decreased
from its current partition. Then we randomly select
two groups to merge and calculate the acceptance
probability, [13], based on current and new
partitions, and . Choose a random variable
from Uniform (0, 1). If , then accept the
new partition , else keep the current partition .

3) If we choose another prior parameter to update, we update
, , , or directly by

the Gibbs sampler [22].

C. Guidelines for Choosing Initial Values of Parameters and
Hyperparameters in TCP

To facilitate the practice of TCP in the semiconductor in-
dustry and other applications, we will provide guidelines to set
up the related parameters and hyperparameters for related prior
distributions of the TCP method as follows:

1) . We let and
;

2) . Let ,
;

3) . Let ,
and

.
The values of and are only recommendations; they im-

pact the convergence speed of the TCP method.
By using the above guidelines for choosing initial values of

parameters and hyperparameters, engineers only need to de-
termine the numerical level of the parameter. Fur-
thermore, the tolerance concept is widely used in the semicon-
ductor industry and other applications. For example, errors in-
evitably result from metrology systems and minor deviations
with respect to product specifications. Hence, one can set up the

using engineers’ knowledge, product specifications,
or tool limitations. Then, the TCP method could search the op-
timal partition according to the acceptable level of .
Therefore, we could integrate the engineering concept of toler-
ance with the TCP to help engineers implement this method in
practice. In Section III-B, we present the results of sensitivity
analysis to show that the TCP method could generate optimal
partitions with respect to different levels of .

III. SIMULATION STUDIES

As an illustration of the performance of the TCP method,
we provide two simulation cases. In Section III-A, we show
the limited impact of unbalanced usage in manufacturing. In
Section III-B, sensitivity analysis using the different tolerance
controls and a comparison with the pruning results from using
the CART method are reported.

A. Unbalanced Data for Unbalanced Tool Usages

We generate unbalanced data to represent a situation in which
there are three kinds of yield distributions among five tools and

Fig. 1. The posterior distribution of partition in case of Section III-A (we only
display probability �� �����).

the usages of the five tools are different. The purpose of this in-
vestigation is to partition the five tools according to their yield
distributions based on a specific level of tolerance control. Fol-
lowing the notation of modeling in Section II-A, the simula-
tion models are described in detail as follows:

, , where and , with
(so the usages of

five tools are unbalanced), , and
. Thus, there are three groups for the five tools and the

true partition is {(T1, T2), (T3, T4), T5}, which we denote as
(11223). Since the numbers of observations for each tool are un-
equal, we also present the influences on the TCP method from
unbalanced data. For setting the parameters and hyperparame-
ters of the prior distributions in this case, we use the guidelines
in Section II-C with .

By the TCP method, the correct partition (denoted as (11223))
is the mode of the posterior distribution with probability 0.49.
The stationary posterior distribution of partitions is given in
Fig. 1. As a result, we find that the impact of unbalanced data is
very limited. Therefore, the unbalanced tool usage in semicon-
ductor manufacturing will not influence our methods.

B. Sensitivity Analysis With Different Tolerance Controls and
its Comparison With the Pruning Results of the CART Method

In sensitivity analysis, the data is generated from the
same model as in case of Section III-A, but the number
of observations for each tool is equal to 30. Thus, the true
partition is {(T1, T2), (T3, T4), T5} (denoted as (11223)).
Here, we apply the TCP method to different values of

to show its influence on
the results of the TCP method. The results of 30 simulations
for every level are given in Table I. Now, the group
means are 3, 3, 4, 4, and 7 and the within-group standard
deviations are 1 in this simulation. When the is
0.5 or 1, the target partition of will be the most
plausible because the between group differences can be as large



376 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 22, NO. 3, AUGUST 2009

TABLE I
THE POSTERIOR PROBABILITIES OF DIFFERENT PARTITIONS WITH RESPECT TO DIFFERENT TOLERANCE. THE AVERAGE OF THE POSTERIOR PROBABILITIES FROM

30 SIMULATIONS FOR EVERY TOLERANCE LEVEL ARE REPORTED WITH THE STANDARD ERROR REPORTED IN PARENTHESES. THESE SIMULATION RESULTS

CONFIRM THAT THE TARGET PARTITION, ������ � ����� � ����� �, WILL HAVE THE HIGHEST AVERAGE OF POSTERIOR PROBABILITIES AT DIFFERENT

TOLERANCE LEVELS AS EXPLAINED IN SECTION III-B. FURTHERMORE, THE DISTRIBUTIONS OF POSTERIOR PROBABILITIES INDICATE THE NEXT PLAUSIBLE

PARTITION UNDER THE SPECIFIC TOLERANCE CONTROL, WHICH CAN BE USED TO FORM THE CREDIBLE SET IN THE BAYESIAN APPROACH. (WHEN THE

POSTERIOR PROBABILITY IS SMALLER THAN 0.0001, IT IS REGARDED AS 0. WHEN THE MAXIMUM VALUE OF THE AVERAGE POSTERIOR PROBABILITIES FOR ALL

TOLERANCES IN ONE POSSIBLE PARTITION IS SMALLER THAN 0.005, THIS PARTITION IS OMITTED IN THIS TABLE.)

as 1. When the is 2, 3, 4, or 5, the target partition
of will be the most plausible because the between
group differences can be as large as 4 and within group standard
deviation is 1. When the is 6, the target partition
of will be the most plausible because the between
group differences are smaller than 6. The posterior probability
of the target partition turns out to be the mode with the highest
average of posterior probabilities in 30 simulations for every

level. Furthermore, the standard errors are very
small, demonstrating the robustness of the posterior modes.
Consequently, the averages of the posterior probabilities of
three partitions, , , and , will
change according to the levels of different . The
average of posterior probabilities of the partition
decreases when the increases. The average of pos-

terior probabilities of the partition increases when
the increases from 0.5 to 3 and decreases when
the increases from 3 to 6. The average of posterior
probabilities of the partition increases when the

increases. That is, we find that the probability of
merging tools increases as the increases. Hence,
the posterior distributions of the partitions reflect the levels of
tolerance controls and the posterior probabilities of the next
plausible partitions and other partitions indicate the strength of
plausibility. These posterior probabilities can be used to form a
credible set in the Bayesian approach.

The results of sensitivity analysis do support the evidence that
the partitioning results of TCP will reflect the levels of toler-
ance controls. Using the above simulation results, we show that
the TCP method provides plausible partitioning results by in-
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Fig. 2. A tree obtained by the CART model for case in Section III-B.

TABLE II
THE DIFFERENT PARTITIONING RESULTS WITH RESPECT TO DIFFERENT

VALUES OF COST COMPLEXITY IN THE CART MODEL FOR CASE

IN SECTION III-B

tegrating the RJMCMC method and the engineers’ control of
tolerance.

We also analyze the data by the CART method. We use
the S-Plus functions of tree and prune.tree to find the stan-
dard CART results [23]. The complete tree result is given in
Fig. 2, and the best partitioning results with respect to different
cost-complexities are given in Table II. Combining the results
in Table I and Table II, one can generate reasonable partitioning
results by different tolerances and approach the same partition
from pruning trees in the CART method. However, the TCP
method can generate the partition automatically according to
the practice of tolerance control by engineers.

IV. TWO APPLICATIONS IN THE SEMICONDUCTOR INDUSTRY

A. Ramp Up Yield by the TCP Method

The data below is from a company in the semiconductor in-
dustry in Taiwan. The term Srow is one of the key test items in
wafer sort testing. The larger the Srow, the worse the yield per-
formance is. The data consists of 439 lots with
and . Engineers aim to reduce the
mean and variance of Srow. The box plots and related statistics
for various tools of the problematic step are shown in Fig. 3 and
Table III, respectively.

Based on the fact that engineers set their acceptance
, the TCP method partitions the set of tools,

{SPU16, SPU14, SPU07, SPU05, SPU04, SPU03} into three
groups, {SPU16, SPU14, SPU07, SPU04}, {SPU05}, and
{SPU03} (denoted as (111213)) with maximum probability
0.2244. The stationary posterior distribution of partitions is
given in Fig. 4. The same partition result was obtained by the
CART method with . It is consistent
with the tree result using CART as in Fig. 5.

Fig. 3. The box plot of Srow by different tools for case in Section IV-A.

TABLE III
THE MEAN, STANDARD DEVIATION, AND COUNT OF EACH TOOL FOR CASE

IN SECTION IV-A

Fig. 4. The posterior distribution of partition in case of Section IV-A (we only
display probability �� �����).

After looking further into this problematic step, engineers
find that there are two different tool types, one type includes
SPU03 and SPU05 and another type includes SPU16, SPU14,
SPU07, and SPU04. Because the different tool types use dif-
ferent process chemicals, the contaminated chemical is the root
cause of the bad performances of SPU03 and SPU05. In com-
parison, the TCP does separate SPU03 and SPU05 into different
groups that are consistent with the findings of engineers.
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Fig. 6. Engineer daily trouble shooting flow according to autodetection mechanism.

Fig. 5. A tree obtained by the CART model for case of Section IV-A.

TABLE IV
CONCEPTUAL REPORT TO AUTOMATICALLY DETECT THE PERFORMANCE

DIFFERENCE AMONG TOOLS FOR EACH PROCESS STEP

We suggest integrating the TCP method with statistical tests
into a statistical dashboard [2] to form an analysis flow as
in Fig. 6. After building automatic systems according to the
analysis flow, systems could execute the analysis automatically
at night for each item of each product; then engineers could
quickly detect problems, like those shown in Table IV, at the
beginning of their daily work. This will dramatically shorten
the time for engineers to increase yield ramp up.

B. Enhance Process Capability Indices, and , by
Applying the TCP Method

Process capability indices and have been widely
used in the manufacturing industry to provide numerical
measures on process performance and product quality. They

Fig. 7. Site locations on each wafer

are also common indices to demonstrate a company’s own
process capability to their customers and competitors. The
two indices are defined as

, where LSL and
USL are the lower and upper specification limits, respec-
tively, defined by process engineers or product designers,
where is the process mean and is the process standard
deviation. Conventionally, we use
and as estima-
tors of and , respectively, so the natural estimators
of and could be ,

. In gen-
eral, the minimum requirement for and is 1.33 or 2.
Therefore, enhancing and is one of the major tasks for
process engineers in the semiconductor industry.

After completing each process step, one wafer is selected
from every lot and the process parameter is measured at nine
predetermined sites on each wafer as Fig. 7 indicates. The
process parameter is the critical oxide thickness after one
important diffusion process step at a semiconductor manufac-
turing company in Taiwan. Based on product specifications,

and and the and are equal
to 1.132, and 1.1053, respectively.

To apply the TCP method to partition these sites, we define
the to be 10% of specification ,
and we find the partition {site1, {site2, site3, site4, site5, site6,
site7, site8, site9}} (denoted as (122222222)) with maximum
probability 0.5971. This result matches the site phenomenon
shown by the box plots in Fig. 8 and related statistics in Table V.
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Fig. 8. The box plot of Oxide thickness by different sites for case of Section
IV-B.

TABLE V
THE MEAN, STANDARD DEVIATION, AND COUNT OF OXIDE THICKNESS BY

DIFFERENT SITES FOR CASE IN SECTION IV-B

Fig. 9. The posterior distribution of partition in case in Section IV-B (we only
display probability �� �����).

The same partition result was obtained by the CART method
with . According to the posterior
distribution shown in Fig. 9, this result is similar to the tree re-
sult of CART in Fig. 10. After fine-tuning the process recipe to
eliminate the site difference, we can improve the and to
1.86 and 1.56, respectively.

Fig. 10. A tree obtained by the CART model for case in Section IV-B.

Using an automatic system analysis flow, we can automat-
ically find the site profile and then integrate the capability of
auto fine-tuning in the most advanced tools [17]–[19]. Engineers
could further build an automatic process control mechanism as
in Fig. 11 to simultaneously enhance process capability and re-
duce the workloads of engineers.

V. CONCLUSION AND DISCUSSION

Instead of only detecting the statistically significant differ-
ence by using statistical tests, the TCP method can automati-
cally partition tools into several homogenous groups with the
built-in control of tolerance in engineering. It can resolve the
difficulty of determining the related parameters for the CART
method. Instead of using a hierarchical tree structure as CART
does, TCP uses the posterior distribution of the partition to dis-
cover the partitioning structure of tools. The TCP method also
performs well for unbalanced data. Finally, we suggest a method
of choosing initial values of parameters and hyperparameters to
facilitate the TCP method in practice. With two real applications
from the semiconductor industry, we not only show that our
method could provide correct information for engineers to en-
hance yield/process capability, but also provide an idea to build
a practical mechanism by integrating engineers’ daily work flow
and the capability of the most advanced tools. TCP will make it
much easier for engineers to realize the performance differences
among tools and enhance the effectiveness and efficiency for
yield / process capability enhancement and experimental anal-
ysis.

The TCP method could also be applied to similar cases such
as recipes or material comparisons to extend their value. There
are many potential extensions of the TCP method. Tools with
unequal variances and other types of distribution models are
natural extensions for practical engineering situations. All the
above cases could also be extended to a multivariate situation
for engineers to simultaneously perform multiple comparisons
of a collection of responses. These will be investigated in future
studies.

Another important extension is to develop an automatic
system to combine our method with the ANOVA or the
Kruskal-Wallis test in order to automatically alarm the possible
excursion and apply TCP in automatic process control (APC)
[17]–[19]. Thus we would provide more real benefits for the
semiconductor industry.
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Fig. 11. Auto process capability enhancement mechanism by integrating our method, ANOVA, and the auto-recipe-tuning tool.
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