
INFORMS Journal on Computing
Articles in Advance, pp. 1–12
issn 1091-9856 �eissn 1526-5528 http://dx.doi.org/10.1287/ijoc.1110.0477

© 2011 INFORMS

Large-Order Multiple Recursive
Generators with Modulus 231 − 1

Lih-Yuan Deng
Department of Mathematical Sciences, University of Memphis, Memphis, Tennessee 38152,

lihdeng@memphis.edu

Jyh-Jen Horng Shiau, Henry Horng-Shing Lu
Institute of Statistics, National Chiao Tung University, Hsinchu, Taiwan, 30010, Republic of China

{jyhjen@stat.nctu.edu.tw, hslu@stat.nctu.edu.tw}

The performance of a maximum-period multiple recursive generator (MRG) depends on the choices of the
recurrence order k, the prime modulus p, and the multipliers used. For a maximum-period MRG, a large-

order k not only means a large period length (i.e., pk − 1) but, more importantly, also guarantees the equidistri-
bution property in high dimensions (i.e., up to k dimensions), a desirable feature for a good random-number
generator. As to generating efficiency, in addition to the multipliers, some special choices of the prime modulus
p can significantly speed up the generation of pseudo-random numbers by replacing the expensive modulo
operation with efficient logical operations. To construct efficient maximum-period MRGs of a large order, we
consider the prime modulus p = 231 − 1 and, via extensive computer search, find two large values of k, 71499
and 201897, for which pk − 1 can be completely factorized. The successful search is achieved with the help of
some results in number theory as well as some modern factorization methods. A general class of MRGs is intro-
duced, which includes several existing classes of efficient generators. With the factorization results, we are able
to identify via computer search within this class many portable and efficient maximum-period MRGs of order
71499 or 201897 with prime modulus 231 − 1 and multipliers of powers-of-two decomposition. These MRGs all
pass the stringent TestU01 test suite empirically.

Key words : DX/DL/DS generators; equidistribution; portable and efficient generators;
Pollard’s 4p− 15 method; Pollard rho method; primality testing

History : Accepted by Marvin Nakayama, Area Editor for Simulation; received October 2009; revised
June 2010, August 2010, March 2011; accepted June 2011. Published online in Articles in Advance.

1. Introduction
The multiple recursive generator (MRG), which is
based on a kth-order linear recurrence relation with
a large prime modulus p, has become increasingly
popular in recent years. The performance of an
MRG depends on the associated order k, the prime
modulus p, and the multipliers used in the recur-
rence equation. The maximum-period MRGs of a
large order have extremely long periods, excellent
empirical performance, and more importantly, a nice
property of equidistribution over high-dimensional
spaces—namely, that all nonzero vectors of k values
in 8011121 0 0 0 1 p− 19 appear exactly once as k succes-
sive output values over the entire period.

In recent years, combined MRGs proposed by
L’Ecuyer and his collaborators (see, for example,
L’Ecuyer 1996, 1999; L’Ecuyer and Touzin 2000) have
become very popular and have been implemented
in commercial and public software such as MAT-
LAB and SAS, ns2, ns3, Arena, Automod, and Wit-
ness. Among them, MRG32k3a, a combined MRG

proposed in L’Ecuyer (1999), could be the most pop-
ular. By combining two maximum-period MRGs of
order 3, the period length of MRG32k3a is geared up
to approximately 0049 × 1056, a period length suffi-
cient for most applications, and it requires only six
32-bit integers of memory space to store the states of
two component MRGs. MRG32k3a is a good genera-
tor that has two large cycles and has equidistribution
of order 3 if we consider the union of all cycles. For an
MRG to have an equidistribution property over high
dimensions, the order k needs to be large. However,
the task of searching for maximum-period MRGs gets
harder as the order k gets larger.

In addition to the high-order equidistribution prop-
erty, the generating efficiency is another major con-
cern; thus, we consider adopting the modulus p =

231 − 1. With this particular form of prime modu-
lus, we can replace the modulo operation with the
much faster logical shift operation. If we further use
multipliers with the powers-of-two decomposition as
considered in Wu (1997), then multiplications can be

1

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.

 Published online ahead of print October 17, 2011



Deng, Shiau, and Lu: Large-Order Multiple Recursive Generators with Modulus 231 − 1
2 INFORMS Journal on Computing, Articles in Advance, pp. 1–12, © 2011 INFORMS

replaced as well by fast logical operations for addi-
tional savings. The main objective of this paper is to
construct this kind of efficient large-order maximum-
period MRGs.

The key problem in searching for maximum-period
MRGs is to determine whether the corresponding
kth-degree polynomial of a candidate MRG is a
primitive polynomial. Alanen and Knuth (1964) and
Knuth (1998) gave a set of necessary and sufficient
conditions for primitive polynomials. To search for
maximum-period MRGs, Deng (2004) proposed an
efficient algorithm that has an early exit strategy for
nonprimitive polynomials and bypasses the difficulty
of factoring a large integer.

In §2, we review some common solutions for resolv-
ing the difficulties in the classical searching algorithm
for large-order maximum-period MRGs. In §3, we
discuss the issue of factoring large integers of the
special form pk − 1 with p = 231 − 1. Some classi-
cal number theory results are utilized to speed up
the computer search of complete factorizations. Two
large values of k, 71499 and 210897, are found along
with their complete factorizations of pk − 1. In §4,
we describe and discuss a general class of efficient
generators. We show that this new class of genera-
tors are related to three classes of portable and effi-
cient large-order MRGs called DX/DL/DS generators,
which were proposed or discussed in Deng and Xu
(2003) and Deng et al. (2008b). In §5, we list some
efficient and portable MRGs of a large order in this
general class, which are identified by the computer
search based on the searching strategy described in §2.
With p = 231 − 1 and k = 201897, the period length of
the MRGs is extremely long, approximately 10195100903.
In §6, we compare these generators with MRG32k3a in
terms of their generating efficiency and other criteria.
We conclude the paper in §7 with a brief summary and
some remarks.

Throughout this paper, we let p be a prime num-
ber and let �p ≡ 80111 0 0 0 1 p − 19 be the finite field of
p elements.

2. Searching for Maximum-Period
MRGs

MRGs have become one of the most commonly used
random number generators in computer simulations.
Sequences of pseudo-random numbers can be gener-
ated by an MRG of order k via the following kth-order
linear recurrence equation:

Xi = 4�1Xi−1 + · · · +�kXi−k5mod p1 i ≥ k1 (1)

with any not-all-zero initial seeds 4X01 0 0 0 1Xk−15.
Here, the modulus p is a large prime number. Since
Xi ∈ �p, Xi can be easily transformed to a Ui ∈ 60115,

Ui ∈ 60117, or Ui ∈ 40115 by letting Ui = Xi/p, Ui =

Xi/4p− 15, or Ui = 4Xi + 0055/p, respectively.
It is well known that the maximum period of an

MRG is pk − 1, which is achieved if and only if its
characteristic polynomial

f 4x5= xk
−�1x

k−1
− · · · −�k (2)

is a primitive polynomial. Alanen and Knuth (1964)
gave three conditions for verifying the primitivity of
f 4x5. See also Knuth (1998).

In addition to the long period, a maximum-period
MRG is known to have the nice property of equidistri-
bution up to k dimensions: every t-tuple (1 ≤ t ≤ k) of
integers between 0 and p−1 appears exactly the same
number of times (pk−t) over its entire period (pk − 1),
with the exception of the all-zero tuple that appears
one time less (pk−t − 1). See, for example, Lidl and
Niederreiter (1994, Theorem 7.43).

2.1. Resolving Difficulties in Finding
Maximum-Period MRGs

As mentioned in §1, when k and p are large, it can be
time consuming to determine whether f 4x5 in (2) is
a primitive polynomial when checking the conditions
of Alanen and Knuth (1964) directly. To speed up the
search, Deng (2004) proposed an early exit strategy
when f 4x5 is not a primitive polynomial. Another dif-
ficulty is with regard to the factorization of pk − 1,
which can be very hard when k and p are large. Given
the current technology, factoring an integer with 200
digits (or more) is hard unless this integer has a
special structure. Alternatively, L’Ecuyer et al. (1993)
suggested finding a prime p for a given k such that

R4k1p5= 4pk − 15/4p− 15 (3)

is also a prime number, to bypass the difficulty of
factorization. Such R4k1p5 was termed a generalized
Mersenne prime (GMP) in Deng (2004), where a list of
GMPs with k up to 11511 was also given. Later, Deng
(2008) found some additional GMPs for order k up to
101007.

For achieving computational efficiency in gener-
ating random numbers, in this paper, we consider
adopting p = 231 − 1. With this p, the original thought
was to find k such that R4k1p5 is a prime number.
Unfortunately, Deng (2005) reported that the search
was unsuccessful for k up to 251000. We conducted
another search for k further up to 601000, which was
also unsuccessful. The computation was quite inten-
sive. Specifically, for each candidate k, we checked
whether R4k1p5 is a “probable” prime using some
probabilistic tests, which can be highly efficient, and
the test result is definite when a number is declared
composite. The required computing time for each can-
didate k is more than 10 hours on a PC with 2.8 GHz

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.



Deng, Shiau, and Lu: Large-Order Multiple Recursive Generators with Modulus 231 − 1
INFORMS Journal on Computing, Articles in Advance, pp. 1–12, © 2011 INFORMS 3

CPU when k reaches 601000. Moreover, to the best
of our knowledge, there are no known mathemati-
cal results about the existence of prime R4k1p5 for
p = 231 − 1. Therefore, in this study, instead of finding
a prime R4k1p5 to bypass complete factorization, we
switch to the strategy of finding k such that R4k1p5
in (3) is easy to be factored.

2.2. Efficient MRGs with the Prime Modulus
p = 231 − 1

In this paper, we focus on finding maximum-period
MRGs in (1) with p = 231 −1, a popular modulus with
computational advantages. For example, the expen-
sive modulo operation 4mod p5 can be replaced by
much faster logical operations. Specifically, Deng and
Xu (2003) defined a simple C function to compute
zmod 231 − 1 as

unsigned long MODP(unsigned long z)

{return (((z)&p)+((z)>>31));}1

where z is the operand, “&” is the “bitwise logical
and” operation, and “>>” is the logical right shift
operation. Also, using multipliers of the form 2r ±2w,
called the powers-of-two decomposition, can result
in fast computation by using only shift and addi-
tion operations. The utilization of the powers-of-two
decomposition was suggested by Wu (1997) for linear
congruential generators (LCGs) with prime moduli of
the form 2q − 1. L’Ecuyer and Simard (1999) general-
ized the method to the case when the prime modulus
has the form 2q − h for small h. However, L’Ecuyer
and Simard (1999) also pointed out that such LCGs
have bad statistical properties because the recurrence
does not “mix the bits” well enough. On the other
hand, Deng (2005) and Deng et al. (2008a) found that
similar problems do not occur in many large-order
MRGs with p = 231 − 1. The latter also conducted a
speed comparison on several generators and reported
that a DX generator with a powers-of-two multiplier
is about twice as fast as a DX generator with a gen-
eral multiplier. DX generators are MRGs of a special
form proposed by Deng and Xu (2003) for efficiency.
See §4.2 for a brief description.

With the prime modulus p fixed as 231 −1, factoring
pk − 1 can be quite difficult in general. In the follow-
ing, we discuss the possibility of getting complete fac-
torizations for some large values of k for which pk −1
has some special structures.

In the next section, we discuss some useful tech-
niques and theories in general for factoring a large
integer and more specifically for factoring pk − 1.

3. Factoring pk − 1 When p = 231 − 1
It is hard to find the complete factorization of R4k1p5
for a general k. However, if there are some special

structures on R4k1p5 such that certain powerful factor-
ization methods can be utilized, then it may become
easier to find some ks with the complete factorization
of R4k1p5.

In this section, we explore three approaches to find-
ing k and the complete factorization of R4k1p5 =

4pk−15/4p−15 with p = 231 −1. Because each approach
is more suitable for a certain type of R4k1p5, we use
it to search over those ks with this particular type of
R4k1p5 for complete factorization.

3.1. Factorization of 4pk − 15 via Trial Divisions
The first approach is to find k for which R4k1p5 is
easy to factor because it contains some “small” prime
factors (say, ≤109) and only one single huge prime fac-
tor. Specifically, Deng (2005) found three such ks (i.e.,
k = 471643, and 11597) by considering R4k1p5= q ×H ,
where q is a prime not greater than 109 and H is a
huge prime.

In this paper, for large values of k, we conduct a
similar search as in Deng (2005) by removing all small
prime factors less than a chosen value ã. Specifically,
let the factorization of R4k1p5 be written as

R4k1p5=

r
∏

i=1

q
ci
i for some ci ≥ 11 i = 11 0 0 0 1 r1 (4)

where q1 < q2 < · · · < qr = Hk are (mostly) unknown
primes. If Hk (the largest prime factor of R4k1p5) is the
only prime factor greater than ã, then we can find the
complete factorization of R4k1p5 by performing trial
divisions up to ã. Whereas a larger value of ã can
increase the possibility of finding all small factors, it
also increases the computing time required for finding
all prime factors less than ã. In this study, following
Deng (2005), we set ã= 109.

When k is large, computation using trivial trial divi-
sion to search for small prime factors of R4k1p5 can be
very time consuming. Fortunately, the search can be
greatly sped up with the help of Legendre’s theorem,
given below.

Theorem 1 (Theorem 5.7 in Riesel 1994, p. 165). Let
k be a prime, and let a1 b be integers with gcd4a1 b5= 1.
For every prime factor q of 4ak − bk5/4a− b5, we have q =

1 mod 2k.

By Theorem 1, any prime factor q of R4k1p5 has the
form

q = 2kC + 1 (5)

for some positive integer C. Therefore, we can com-
pute Q, which is the product of all primes q < 109

(say) of the form 2kC + 1. We then compute

D = gcd4R4k1p51Q5

and apply some probabilistic primality tests to
R4k1p5/D.

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.



Deng, Shiau, and Lu: Large-Order Multiple Recursive Generators with Modulus 231 − 1
4 INFORMS Journal on Computing, Articles in Advance, pp. 1–12, © 2011 INFORMS

Having performed this procedure for k < 601000,
we find k = 71499, for which

R4714991 p5 = 1313331223 × 2616061453 × 6013061959

× 29614651467 ×H714991 (6)

where H71499 is a probable prime. We then verify the
primality of H71499 with the probabilistic tests pro-
vided by commercial packages such as Maple and
Mathematica. We further perform the industrial prime
test proposed in Damgård et al. (1993) on H71499. It
passes both tests. See also Algorithm 3.4.7 in Crandall
and Pomerance (2000, p. 126) for the industrial prime
test. As discussed in Crandall and Pomerance (2000),
the probability of committing a false-positive error
can be controlled to a level much smaller than 10−200.
This error probability is much smaller than the com-
puter software error or the hardware error. Therefore,
according to Crandall and Pomerance (2000, p. 127),
H71499 can be safely accepted as a “prime” for all but
the most sensitive practical applications.

3.2. Factorization of 4pk − 15 via
Pollard’s 4p− 15 Method

The second approach is to use some modern factoriza-
tion methods to “quickly” find some large factors of
R4k1p5. We first describe one popular method called
Pollard’s 4p − 15 method (Pollard 1974). This method
is most useful when every prime factor q (except the
largest one) of R4k1p5 in (4) has the property that q−1
has only “small” prime factors. To be more specific,
if, for each prime factor q 6= qr of R4k1p5, there exists
a reasonably small upper bound W such that

w ≤W (7)

for all prime w satisfying w � 4q − 15, then Pollard’s
4p− 15 method can find the complete factorization of
R4k1p5 as described below.

To simplify the notation, let q be any prime factor qi
4i < r5 of R4k1p5 in (4), and denote R4k1p5 by R. If we
can find a Q such that 4q − 15 �Q, then Fermat’s little
theorem, which states that Aq−1 = 1 mod q for any A 6=

0 mod q, tells us that

AQ
= 1 mod q1

provided that A 6= 0 mod q. Since q is a common factor
of R and (AQ − 1 modR), we may be able to find a
factor of R by computing

gcd4AQ
− 11R5

with an appropriately chosen Q.
To implement Pollard’s 4p− 15 method, we need to

set the upper bound W in (7) and then find Q accord-
ingly. In this study, we follow a reasonable choice of Q
described in Riesel (1994) when W is given. That is, let

Q =
∏

q∈SW

qc1

where the set SW contains all primes q smaller than
W , and c ≥ 1 is the integer associated with q such that
qc ≤W < qc+1.

Now we only need to choose the upper bound W .
According to Theorem 1, for any prime factor q of
R, k is a prime factor of q−1. Thus, by (7), the smallest
potential value for the upper bound W is k. Therefore,
we need to choose W ≥ k for Pollard’s 4p−15 method.

In this study, we choose W = k and A = 2 and
search over various values of k. The above-described
procedure gives k = 201897 and

R42018971 p5

= 515581603 × 110134613151943 ×H2018971 (8)

where H201897 is a huge probable prime tested by the
procedure described in §3.1.

When k is very large, the computing time for the
above procedure can be long. In this case, we can con-
sider a smaller value of W < k in (7) with A = 2k. As
an illustration, for k = 201897, the complete factoriza-
tion (8) gives

q1 − 1 = 515581602 = 2 × 7 × 19 × 2018971

q2 − 1 = 110134613151942 = 2 × 3 × 43 × 97

× 211 × 2018973

for k = 71499, the complete factorization (6) gives

q1 − 1 = 1313331222 = 2 × 7 × 127 × 714991

q2 − 1 = 2616061452 = 22
× 887 × 714991

q3 − 1 = 6013061958 = 2 × 41021 × 714991

q4 − 1 = 29614651466 = 2 × 3 × 11 × 599 × 714990

Note that if we could foresee this, then we can set
the values of W in (7) with A = 2k for k = 71499
and k = 201897 as small as 41021 and 211 (marked in
boldface above), respectively, to find all “small” fac-
tors of the corresponding R4k1p5. Unfortunately, there
is no way we could know these smallest bounds in
advance. Thus choosing a value for W larger than
required is still a good strategy for Pollard’s 4p − 15
method.

3.3. Factorization of 4pk − 15 via
Pollard’s rho Method

Pollard’s rho method is another powerful factor-
ization method (Pollard 1975). This method does
not assume special structures such as those for the
two methods described above on the integer to fac-
tor. However, successful searches are not guaranteed
because it is a probabilistic method, and the number
of iterations required (for a successful search) may be

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.



Deng, Shiau, and Lu: Large-Order Multiple Recursive Generators with Modulus 231 − 1
INFORMS Journal on Computing, Articles in Advance, pp. 1–12, © 2011 INFORMS 5

larger than the upper bound set in the search algo-
rithm. We use this method to find a factor q of R
according to the algorithm described below.

Let v0 be a chosen initial seed, and let h4 · 5 be a
function modulo R. Choices of h4 · 5 will be discussed
later.

Step 1. Set the initial values x0 = v0 and y0 = v0.
Generate two sequences 8xi1 i ≥ 09 and 8yi1 i ≥ 09 by

xi = h4xi−15 and yi = h4h4yi−1550

Note that 8yi1 i ≥ 09 is simply 8x2i1 i ≥ 09. This key
step is based on Floyd’s cycle-finding algorithm as
discussed in Riesel (1994, p. 178).

Step 2. If D ≡ gcd4�xi − yi�1R5= 1, then move on to
the next i; else, if D<R, return D as a factor of R. Oth-
erwise (i.e., D =R, which means either R is a prime or
Pollard’s rho algorithm has failed), retry with another
initial value v0 when R is not a prime.

As explained in Riesel (1994, pp. 185–186), for a
general factorization problem, it is common to choose
h4x5 = x2 + amodR. However, because all the prime
factors of R are of the form 2kC +1, using h4x5= xk +

amodR is likely to reduce the number of iterations
needed to discover a prime factor q by a proportion of√
k− 1 when compared to using h4x5 = x2 + amodR,

the common choice. It is interesting to observe that,
with h4x5= xk + amodR, we have

xi − xj = xk
i−1 − xk

j−1

= 4xi−1 − xj−15

(

xk
i−1 − xk

j−1

xi−1 − xj−1

)

for i 6= j0

Applying the above formula iteratively, we have

xi − xj =

(

xk
i−1 − xk

j−1

xi−1 − xj−1

)(

xk
i−2 − xk

j−2

xi−2 − xj−2

)(

xk
i−3 − xk

j−3

xi−3 − xj−3

)

· · · 0

According to Theorem 1, each term of the above prod-
uct may contain prime factors of the form 2kC + 1.
Thus, the iterative steps in Pollard’s rho method can
accumulate factors of this type.

By using Pollard’s rho method, we confirm the
finding of all the prime factors of R4k1p5 for both
k = 71499 and k = 201897. The number of iterations
needed to find all “small” factors appears random for
each try. For k = 71499, Pollard’s rho method finds
all the factors in less than 350 iterations. For k =

201897, the number of iterations needed ranges from
208 to 21607 with various initial values. We have
designed a Maple program to implement the afore-
mentioned algorithm. The required computing time is
not reported here because it highly depends on the
(random) number of iterations needed and the com-
puting hardware, software (other packages or ver-
sions), and/or operating system used.

3.4. Discussion
It is possible to utilize more powerful modern factor-
ization algorithms that can find some additional large
factors of R and then hopefully find the complete
factorization. For example, Lenstra’s elliptic curve
method (Lenstra 1987) and the Number field sieve
method (Pollard 1993) are two powerful factoriza-
tion methods. Both methods have found prime factors
of 50 digits or more for some cases as reported in the
literature. See Riesel (1994) for more details. However,
we were unsuccessful in finding factorizations with
larger values of k using these methods.

We remark that, although the two R4k1p5s men-
tioned in this section are big numbers with many
thousands of digits, they are easily handled by some
popular commercial symbolic language packages
such as Maple or Mathematica without any problems
on number representation. We can also use some free
and popular multiprecision software packages such
as Victor Shoup’s NTL (http://www.shoup.net/ntl/)
or GMP (http://gmplib.org/). In terms of multipreci-
sion computation, NTL and GMP are more efficient
than Maple or Mathematica.

4. Efficient and Portable
Large-Order MRGs

4.1. A General Class of Efficient Generators
In general, an MRG is computationally efficient
if either its recurrence Equation (1) has very few
nonzero terms or it can be implemented efficiently
with a higher-order recurrence equation of very few
nonzero terms. A DX generator, proposed by Deng
and Xu (2003) and Deng (2005), is an example of
the former case. DL and DS generators considered in
Deng et al. (2008b), which have many nonzero terms
with the same nonzero coefficient in the recurrence
equation, are two examples of the latter case.

We now consider a more general class of generators
as follows. For an integer C, let SC = 8j � �j =C9 be the
set of the indices j with �j =C. Consider the following
class of generators:

Xi −AXi−g = B

(

∑

j∈SB

Xi−j

)

+D

(

∑

j∈SD

Xi−j

)

mod p1 i ≥ k1 (9)

where A, B, D, and g are integers appropriately
chosen.

This general class of generators has several inter-
esting special cases, including DX, DL, DS, and other
types of generators, as discussed in brief next.

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.



Deng, Shiau, and Lu: Large-Order Multiple Recursive Generators with Modulus 231 − 1
6 INFORMS Journal on Computing, Articles in Advance, pp. 1–12, © 2011 INFORMS

4.2. DX Generators
The DX generators comprise a system of portable, effi-
cient, and maximum-period MRGs in which the coef-
ficients of the nonzero multipliers are the same. In
particular, DX-k-s-t generators, as considered in Deng
(2005), can be obtained from (9) with A= 0 as follows:

1. DX-k-1-t: D = 1, S1 = 8t9, SB = 8k9,
2. DX-k-2-t: SD = �, SB = 8t1 k9,
3. DX-k-3-t: SD = �, SB = 8t1 �k/2�1 k9,
4. DX-k-4-t: SD = �, SB = 8t1 �k/3�1 �2k/3�1 k9,

where s is the number of terms with coefficient B, and
t is the first index for which �j 6= 0.

4.3. DL and DS Generators
DL/DS generators can be obtained from (9) with
some special values for the parameters as in the
following:

1. DL-k-t:

Xi = B4Xi−t +Xi−t−1 + · · · +Xi−k5 mod p1 i ≥ k0 (10)

Such DL generators can be implemented efficiently by

Xi =Xi−1 +B4Xi−t −Xi−4k+155 mod p1 i ≥ k+ 10 (11)

Thus, DL-k-t generators can be considered a special
case of (9) with A= g = 1, D = −B, S−B = 8k+ 19, and
SB = 8t9. For simplicity, the default case of t = 1 is
referred to as the DL-k generators.

2. DS-k-t: Deng et al. (2008b) considered another
class of generators with many nonzero coefficients,
called DS generators:

Xi = B
k
∑

j=11 j 6=t

Xi−j mod p1 (12)

which can be efficiently implemented by

Xi = Xi−1 +B4Xi−1 −Xi−t +Xi−t−1 −Xi−k−15 mod p1

i ≥ k+ 10 (13)

The parameter t of the zero-coefficient index can be
chosen arbitrarily. DS-k-t generators can be consid-
ered a special case of (9) with A = g = 1, D = −B,
S−B = 8t1 k + 19, and SB = 811 t + 19. We refer to the
default case of t = �k/2� as the DS-k generators.

4.4. Advantages of the New Class of Generators
Because of the limited choices of r and w for the mul-
tiplier B = 2r ± 2w, and by restricting the modulus
to p = 231 − 1, the default-case maximum-period DX-
k-s, DL-k, and DS-k generators may not exist when
the order k is large. Hence, it is necessary to search
over a more general class of generators, and that was
the main motivation for introducing the additional
parameter t in DX, DL, and DS generators in the pre-
vious works.

On the other hand, introducing AXi−g in the new
class of generators (9) has several advantages. First,
it provides a general form to cover DX generators
and DL/DS generators by letting A= 0 and A= g = 1,
respectively. When A= 0, the recurrence Equation (9)
computes a linear combination of few nonzero terms.
When A = g = 1, the successive difference Xi − Xi−1
can be expressed as a linear combination of just a
few nonzero terms. Second, similar to the role of
the parameter t, it can greatly expand the searching
space of generators by varying values of A and/or g
when the form of the multiplier is restricted. The last
and the most important advantage can be described
by the results of some empirical studies performed
on DX-k-s-t generators. We have observed that when
t gets larger, the empirical performance of DX-k-s-t
generators becomes poorer. Usually, we fix t = 1 to
search for the multiplier B to achieve the maximum
period. However, if we restrict B = 2r ± 2w for some
r1w, then t may need to be large to obtain a success-
ful search for a DX-k-s-t generator, especially when
the order k is large. For example, we have found a
DX-k-s-t generator (with k = 201897, s = 1, t = 382,
and B = 13412171736 = 227 + 23) consistently fails one
particular test (“SerialOver, with dimension 2”) in the
Crush battery of TestU01 test suite, a popular pack-
age developed by Pierre L’Ecuyer for testing random
number generators. See L’Ecuyer and Simard (2007)
for more details about TestU01. The same failure also
occurs when we replace the powers-of-two multiplier
(B = 2r ±2w) with a general B while t = 382 is fixed. It
would be interesting to know the reason why DX-k-s-t
generators fail for a large value of t—say, t > 300.
According to our observations, this problem appears
to be more profound when s = 1 and t is very large.
Thus, instead of searching over t to find DX-k-s-t gen-
erators, we propose a modification of the original DX-
k-s generators by adding Xi−g in the recurrence as
follows:

1. DX*-k-1-g:

Xi −Xi−g =Xi−1 +BXi−k mod p1 i ≥ k0 (14)

2. DX*-k-2-g:

Xi −Xi−g = B4Xi−1 +Xi−k5mod p1 i ≥ k0 (15)

3. DX*-k-3-g:

Xi −Xi−g = B4Xi−1 +Xi−�k/2�

+Xi−k5mod p1 i ≥ k0 (16)

4. DX*-k-4-g:

Xi −Xi−g = B4Xi−1 +Xi−�k/3�

+Xi−�2k/3� +Xi−k5mod p1 i ≥ k0 (17)

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.



Deng, Shiau, and Lu: Large-Order Multiple Recursive Generators with Modulus 231 − 1
INFORMS Journal on Computing, Articles in Advance, pp. 1–12, © 2011 INFORMS 7

Note that the DX*-k-s-g generators given
in (14)–(17) are simply special cases of (9) with A= 1.
To search for maximum-period DX* generators with
B = 2r ± 2w, we can then try various values of g.
Our evaluation indicates that the corresponding
DX* generators do pass the extensive empirical tests
provided in the Crush battery of TestU01.

Computing codes in C for implementing DX gen-
erators for any order k have been provided and dis-
cussed in Deng (2005), and they are available at
http://www.cs.memphis.edu/∼dengl/dx-rng/. Codes
for the other generators described above are available
from the authors upon request.

5. Tables of Large-Order DX, DL, and
DS Generators

In §3, we have presented the complete factorization
of R4k1231 − 15 for k = 71499 and k = 201897. Using
the efficient searching algorithm described in Deng
(2004, 2005), it is straightforward to find maximum-
period DX, DL, and DS generators. The period lengths
of these generators are approximately 1069198001 and
10195100903 for k = 71499 and k = 201897, respectively.

In this section, we tabulate three kinds of large-
order MRGs found via computer search: (i) DX, DL,
and DS generators with p = 231 − 1 and general B;
(ii) DX, DL, and DS generators with p = 231 − 1 and
B = 2r ± 2w; and (iii) DX* generators with p = 231 − 1
and B = 2r ± 2w.

5.1. DX, DL, and DS Generators with p = 231 − 1
and General B

We search for maximum-period MRGs under the fol-
lowing conditions.

Condition 1 (minB). We start the search of B
from the smallest value and move upward until
a maximum-period MRG of the specified type
(DX/DL/DS) is found. As discussed in Deng and Xu
(2003) and Deng (2005), the generators obtained under
this condition are not recommended for general use
because B is too small. On the other hand, the small
magnitude makes such B simpler to implement in
a procedure developed for automatic generation of
other maximum-period MRGs from a given MRG, as
discussed in Deng et al. (2009). In addition, they all
pass the stringent empirical tests in the Crush battery
of TestU01.

Condition 2 (B < 2e). We start the search of B from
the upper bound 2e for some e and move down-
ward. The choice of e depends on the type of MRGs
under search. For an exact computation using the
IEEE double-precision standard, we choose e = 20 for
DX generators with s = 1, 2, and DL generators, and
we choose e = 19 for DX generators with s = 3, 4, and
DS generators.

Condition 3 (B < 230). We start the search of B
from the upper bound 230 and move downward. The
size of B is large, and it would be suitable when a
64-bit integer type is available in the computing plat-
form and the compiler. However, without using 64-
bit data types/operations, a portable MRG can be
implemented in 32-bit operations at the expense of
slight generating inefficiency as follows. Following
Deng (2005), we find the smallest positive integer u
such that

B+u× p =C1 ×C2 for some 0 <C11 C2 < 2190 (18)

Therefore, we find

B =C1 ×C2 mod p0

This method is more general than the idea of finding a
multiplier B such that it is exactly equal to the product
of two small numbers, as considered in Marse and
Roberts (1983).

Because the range of B is wide, we can fix the
parameter t as its default value for the generators con-
sidered. That is, t = 1 for DX and DL generators, and
t = �k/2� for DS generators.

For k = 71499 and k = 201897, some maximum-
period DX, DL, and DS generators are found and
listed in Table 1. We remark that the required search-
ing time is clearly random, and it increases signifi-
cantly as we move from k = 71499 to k = 201897. The
required searching time ranges from a few hours to
two to three days and from three days to more than
two weeks for k = 71499 and k = 201897, respectively.

5.2. DX, DL, and DS Generators with p = 231 − 1
and B = 2r ± 2w

As mentioned earlier, we can further increase the
generating speed by considering B = 2r ± 2w, where

Table 1 List of DX-k-s, DL-k, and DS-k with Various Sizes of B for
k = 71499 and k = 201897

Generator minB B < 2e B < 230 u C1 C2

k = 71499
DX(s= 1) 131620 9671501 1,073,735,056 1 281979 1111157
DX(s= 2) 181178 110381757 1,073,706,686 0 81999 1191314
DX(s= 3) 21307 5171486 1,073,741,559 1 391878 801777
DX(s= 4) 251972 5191708 1,073,723,713 0 41273 2511281
DL 381999 110351347 1,073,716,921 1 191304 1661867
DS 261908 4511111 1,073,731,005 1 71043 4571364

k = 201897
DX(s= 1) 291260 110091278 1,073,616,009 3 281350 2651117
DX(s= 2) 451072 110281880 1,073,738,158 0 51554 1931327
DX(s= 3) 101706 4901124 1,073,714,805 0 221531 471655
DX(s= 4) 1101120 5141809 1,073,718,732 2 671034 801089
DL 971155 9721308 1,073,721,537 0 21331 4601627
DS 331948 4391186 1,073,656,108 0 261908 391901

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.



Deng, Shiau, and Lu: Large-Order Multiple Recursive Generators with Modulus 231 − 1
8 INFORMS Journal on Computing, Articles in Advance, pp. 1–12, © 2011 INFORMS

Table 2 List of DX-k-s-t, DL-k-t, and DS-k-t with B = 2r + 2w for
k = 71499 and k = 201897

Generator t B (r 1w )

k = 71499
DX(s= 1) 29 110481832 420185
DX(s= 2) 64 53710011984 4291175
DX(s= 3) 70 13414791872 4271185
DX(s= 4) 11 110481578 420115
DL 13 210971280 421175
DL 125 210971156 421125
DS 31915 110501624 4201115
DS 31754 110481832 420185

k = 201897
DX(s= 1) 23 1107317501016 4301135
DX(s= 2) 95 411981400 4221125
DX(s= 3) 63 3315541440 425135
DX(s= 4) 148 26814351968 428195
DL 432 5241289 419105
DL 536 5251312 4191105
DL 676 110491600 4201105
DL 456 210971156 421125
DS 111050 110561768 4201135
DS 101661 6716331152 4261195
DS 111270 3315541496 425165
DS 111290 1617931600 4241145
DS 111200 3316191968 4251165

Table 3 List of DX*-k-s-g Generators with B = 2r + 2w for k = 71499
and k = 201897

DX∗ generator g B (r 1w )

k = 71499
DX∗(s= 1) 45 13412171984 427185
DX∗(s= 1) 193 813881612 423125
DX∗(s= 1) 330 813881672 423165
DX∗(s= 1) 349 211131536 4211145
DX∗(s= 1) 360 5281384 4191125
DX∗(s= 1) 376 2621146 418115
DX∗(s= 1) 383 1107410031968 4301185
DX∗(s= 2) 17 13412171792 427165
DX∗(s= 2) 193 1619081288 4241175
DX∗(s= 2) 221 210971156 421125
DX∗(s= 2) 222 53618701944 429155
DX∗(s= 2) 257 53618711040 429175
DX∗(s= 3) 197 54110651216 4291225
DX∗(s= 3) 257 411981400 4221125
DX∗(s= 3) 496 26815001992 4281165
DX∗(s= 4) 131 53618711040 429175
DX∗(s= 4) 69 6716331152 4261195
DX∗(s= 4) 345 1107417901400 4301205

k = 201897
DX∗(s= 1) 53 1107417901400 4301205
DX∗(s= 1) 70 1107317431872 4301115
DX∗(s= 1) 234 813961800 4231135
DX∗(s= 1) 287 813891120 423195
DX∗(s= 1) 447 411941560 422185
DX∗(s= 1) 499 53710011984 4291175
DX∗(s= 2) 122 6711081992 426175
DX∗(s= 2) 555 2621160 418145
DX∗(s= 2) 608 1617811312 4241125
DX∗(s= 3) 166 6711081896 426155
DX∗(s= 3) 779 1618091984 4241155
DX∗(s= 4) 323 1108211301432 4301235

0 ≤ r < w, 19 ≤ w ≤ 30 are some positive integers.
Because the searching space for such B is rather lim-
ited, we search over various t for maximum-period
DX, DL, and DS generators. Specifically, we start from
the default value of t and move upward until a num-
ber of Bs are found. We list these generators in Table 2.

5.3. DX∗ Generators with p = 231 −1 and B = 2r ±2w

We search for B = 2r ± 2w in the class of DX∗ genera-
tors given in (14)–(17), which are slight but significant
modifications to DX generators. The results are listed
in Table 3.

5.4. Empirical Evaluations
We evaluate the generators listed in Tables 1–3 with
the stringent empirical tests in the Crush battery of
TestU01 test suite. Each generator is tested with five
different starting seeds. No p-values are outside the
range of 610−811 − 10−87 for any of these generators.
Note that L’Ecuyer and Simard (2007) considered the
test with p-value outside the range of 610−1011−10−107
as a “clear failure” with one single initial seed. In
other words, with five sets of initial seeds and a larger
cutoff point of 10−8, our generators have gone through
a tougher examination and passed.

6. Comparison
When evaluating the goodness of various genera-
tors, many factors should be considered, including
the generating speed, high-dimensional equidistribu-
tion property, period length, portability, hardware/
software requirement, theoretical justifications, and
empirical performances. Most of these factors have
been addressed earlier; we discuss the rest in the fol-
lowing subsections.

6.1. Timing Comparison with MRG32k3a
In this subsection, we compare our generators with
the popular MRG32k3a generator. As to the gener-
ating efficiency, each component MRG of MRG32k3a
has two nonzero and nonequal multipliers. In total,
MRG32k3a requires four multiplication operations. In
contrast, DX generators require no multiplication for
B = 2r ±2w and only one multiplication for general Bs.
Also, according to Table 1 of a well-known paper by
L’Ecuyer and Simard (2007), a DX generator (with a
general B) is about 50% faster than the MRG32k3a
generator. The authors reported that, using a 64-bit
computer with an AMD Athlon 64 processor of clock
speed 2.4 GHz to generate 108 random numbers, two
DX generators tested need about 104 seconds, whereas
the MRG32k3a generator needs 200 seconds. Because
the generating efficiency of the DX generators does
not depend on the order k, the generators in Table 1
are at least as efficient as the DX generators tested by
L’Ecuyer and Simard (2007). Moreover, the generating

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.



Deng, Shiau, and Lu: Large-Order Multiple Recursive Generators with Modulus 231 − 1
INFORMS Journal on Computing, Articles in Advance, pp. 1–12, © 2011 INFORMS 9

time can be further reduced for the generators with
powers-of-two multipliers, according to the empiri-
cal study in Deng et al. (2008a, Table 5). We have
performed additional timing evaluations as described
below (thanks to the referees for this suggestion).

We time the actual generating time of some DX
generators listed in this paper and MRG32k3a using
the computer clusters at the High Performance Com-
puting Center, University of Memphis; each computer
has a 3.2 GHz Intel Xeon 32-bit processor running in
Linux. For MRG32k3a, we use the built-in function
ulec_CreateMRG32k3a in the TestU01 package to gen-
erate 108 random variates. Using the built-in function
unif01_TimerSumGenWr, the total time is 6081 seconds.
As reported in L’Ecuyer and Simard (2007), the gen-
erating time is highly dependent on the type of CPU
(32-bit versus 64-bit) used, although their relative effi-
ciency remains about the same. We test the timing
under the same setting on all DX generators listed in
Table 2 with a powers-of-two multiplier B. With the
modulus 231 − 1, we can use a more efficient imple-
mentation as discussed in Wu (1997) and L’Ecuyer
and Simard (1999) by replacing the expensive multi-
plication and modulo operations with more efficient
logical operations. For the purpose of comparison,
we also implement the same DX generators using a
general-purpose program in which the usual multi-
plication and modulo operations are used. The timing
comparisons are tabulated in Table 4, in which (a) is
the time (in seconds) needed to generate 108 variates
for the special implementation with logical operations,
and (b) is the time needed for the general implemen-
tation.

From Table 4, we can see that the timing is not
greatly affected when we increase (i) the order k from
71499 to 201897 or (ii) the size of s, the number of
nonzero terms in the DX generators. In addition, it is
found that the special implementation (a) can be two
to three times more efficient than its general imple-
mentation counterpart (b). Using the generating time,
6.81 seconds, for MRG32k3a as the baseline, the rel-
ative efficiency of the special implementation (a) and

Table 4 Time Comparisons Between DX-k-s Generators and
MRG32k3a

s= 1 s= 2 s= 3 s= 4

k (a) (b) (a) (b) (a) (b) (a) (b)

Time needed to generate 108 variates (in s)
7,499 1.23 3.73 1.27 4.28 1.28 4.14 1.38 3.87

20,897 1.23 4.12 1.27 3.86 1.57 4.00 1.44 4.14

Relative timing of DX-k-s vs. MRG32k3a (6.81 s)
7,499 0.18 0.55 0.19 0.63 0.19 0.61 0.20 0.57

20,897 0.18 0.61 0.19 0.57 0.23 0.59 0.21 0.61

Note. The letter (a) denotes special implementation, and (b) denotes general
implementation.

general implementation (b) is about 4- to 5-fold and
1.5-fold more efficient than MRG32k3a, respectively.
We remark here that the cost of the modulo operation
is usually (at least for the computing platform used
here) much higher than the multiplication operation.
Therefore, with p = 231 − 1, we can save significant
generating time by replacing the modulo operation
with a much more efficient logical operation for all
the generators listed in Tables 1–3. On 64-bit com-
puters (which are now commonplace), the efficiency
ratios between MRG32k3a and the DX generators will
be smaller than reported in Table 4. (Thanks to the
referee who pointed this out.) Also, the generator
MRG31k3p proposed in L’Ecuyer and Touzin (2000),
which uses two MRGs of order 3 with multipliers of
the same form (i.e., sum of two powers of 2), is faster
than MRG32k3a.

Any timing comparison of the generating speed is
highly hardware- and software-dependent. One may
observe different results with various computing plat-
forms (32- or 64-bit), compilers, program implemen-
tations, or even operating systems. Compared with
some popular generators such as MRG32k3a, the
generators provided in this paper are clearly more
efficient by either simple counting of the required
expensive multiplication operations or actual timing.
For some applications, saving one or two seconds for
the generation of 108 random variates is not important
at all and need not be a major factor in selecting good
random number generators. However (as pointed out
by a referee), for certain simulation applications such
as in computer graphics and in particle physics, the
speed of generating the random numbers is really the
bottleneck, and the simulation programs may run for
hours or days.

6.2. Hardware Needed
An MRG of order k requires a memory space of size k
to store the state vector. Thus, an MRG of order k =

201897 needs 20,897 32-bit integers of memory space,
which seems quite memory consuming. However, the
cost of computer memory is drastically reduced in
this modern computing age, and a memory size as
such is now considered as a tiny “requirement” with
no additional cost because it is not uncommon to
acquire a PC with a memory space of 4 GB or more. If
the size of memory to store the current state is indeed
a concern, one can certainly consider a smaller k such
as the popular MRG32k3a or smaller-order DX gener-
ators given in Deng and Xu (2003) and Deng (2005).

6.3. Theoretical Tests for the Generators
Ideally, any subsample (or subsequence) of a useful
generator must appear to follow a uniform distribu-
tion, and the numbers should appear to be indepen-
dent of each other. The number of possible successive

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.



Deng, Shiau, and Lu: Large-Order Multiple Recursive Generators with Modulus 231 − 1
10 INFORMS Journal on Computing, Articles in Advance, pp. 1–12, © 2011 INFORMS

t-tuples of the output sequence produced by a gener-
ator with p possible values is pt . An ideal generator
would be able to produce all pt t-tuples with equal
frequency for any values of t. As mentioned earlier,
an MRG of order k with the maximum period almost
achieves this requirement with t ≤ k because it has
the equidistribution property over dimensions up to
k. However, its lattice structure can be bad when con-
sidering (1) successive t-tuples for t > k or (2) selec-
tive (possibly nonsuccessive) tuples of generated vari-
ates indexed by the set—say, I—corresponding to the
indices i for which �k−i 6= 0 in the MRG, because in
these cases the considered tuples will lie on the fam-
ily of equidistant parallel hyperplanes of a higher
dimension. See L’Ecuyer (1997) or L’Ecuyer and
Touzin (2004).

It is common to perform a theoretical test to search
for the best generator among a class of LCGs or small-
order MRGs based on their lattice structures in a
specific dimension t; for example, the popular spec-
tral test is to calculate the maximum distance dt4k5
between adjacent parallel hyperplanes for a chosen
dimension t. A measure suggested by Fishman and
Moore (1986) for comparing generators with differ-
ent values of modulus is the spectral value defined as
St4k5≡ d∗

t 4k5/dt4k5, where d∗
t 4k5 is the theoretical min-

imum of dt4k5; however, the exact values of d∗
t 4k5 are

known only for small t—say, t ≤ 8. For MRGs of any
orders, the commonly used performance measures are
the maximum distance dt4k5 and the approximated
spectral value p−k/t/dt4k5. Because comparing gener-
ators based on the spectral value may yield conflict-
ing results in different dimensions t, another figure of
merit, MT , was defined in the literature as the smallest
spectral value across some dimensions up to dimen-
sion T ; for example, MT ≡ mink<t<T St4k5.

All of these figures of merit and the equidistribu-
tion property are concerned with the “uniform cover-
age” of the t-tuples from the generated sequence. For
the same dimension t ≤ k, the equidistribution prop-
erty is a stronger property than these figures of merit
in the sense that the former can guarantee not only
the existence but also the equal occurring frequency of
all possible pt lattice values of t-tuples, except for the
all-zero t-tuple, which is one time less. When t > k,
the property of equidistribution no longer holds even
for the maximum-period MRGs of order k; then it is
plausible to use the figures of merit to further differ-
entiate these maximum-period MRGs. Sezgin (2006)
gave a long list of references for many other mea-
sures to assess the lattice structure. However, because
of the increasing computational complexity, t cannot
be much larger than k, especially when k is large.
Because the order k of the generators proposed in this
paper is already very large (i.e., 71499 or 201897), there

is only a minor “marginal effect” to have better fig-
ures of merit.

If uniform coverage of the generated sequence in
a high-dimensional space is a major concern, then
all of our proposed MRGs of order 201897 are, so
far, the best because they all have the dimensions
of equidistribution much larger than that of current
popular generators. Under the equidistribution cri-
terion, a full-period MRG of a large order is bet-
ter than a much smaller-order MRG. Therefore, any
MRG of order 20,897 listed in this paper outper-
forms (in terms of the lattice structure for successive
tuples) the “best” MRG of order 7,499 (if it can be
found). For the same reason, many popular small-
order generators (e.g., the popular MRG32k3a) are
doomed to be inferior to these large-order MRGs from
this aspect. Nevertheless, MRG32k3a is a good com-
bined generator in which each of the two compo-
nent MRGs has a property of equidistribution up
to three dimensions. L’Ecuyer (1999) showed that
MRG32k3a is “well behaved” in all dimensions up
to at least 45 with the figure of merit, M45 (approxi-
mately 0.6225). Having the equidistribution property
up to k dimensions, all MRGs of order k = 201897
or k = 71499 proposed in this paper are “better”
than MRG32k3a under any of these uniform cover-
age criteria. L’Ecuyer and Simard (2007) also reported
that both MRG32k3a and some large-order MRGs
(including DX-1597 and DX-47, proposed in Deng
2005) passed the stringent Crush battery of tests in
the TestU01 library. In addition, they reported that
all LCGs, including the “best” (under spectral tests)
LCGs found in Fishman and Moore (1986), failed the
Crush battery badly.

To further compare all maximum-period MRGs of
the same order k (i.e., they all have the nice equidistri-
bution property for dimensions up to k), we need to
consider dimensions where t is larger than k (or some
specifically selected dimensions) to see any difference
in terms of “better lattice structure.” For general large-
order MRGs with no special forms, it is likely to be
computationally infeasible to apply the exact standard
spectral test algorithm, which takes exponential time
in the dimension t, to compute the maximum dis-
tance, dt4k5, between parallel hyperplanes in dimen-
sion t higher than k, especially for generators of order
k as large as 71499 or 201897. Nevertheless, L’Ecuyer
(1997) gave a simple lower bound, 41 +

∑k
i=1 �

2
i 5

−1/2,
for dt4k5 and concluded that a “good” MRG should
have a large sum of squares of coefficients,

∑k
i=1 �

2
i

(but not vice versa). This simple lower bound can be
used to “detect” generators with potential bad lat-
tice structures, but, as a lower bound, the informa-
tion is not sufficient to compare the “actual” lattice
structures among generators. Unless this simple lower
bound can approximate equally well the actual value

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.



Deng, Shiau, and Lu: Large-Order Multiple Recursive Generators with Modulus 231 − 1
INFORMS Journal on Computing, Articles in Advance, pp. 1–12, © 2011 INFORMS 11

for various MRGs, one cannot mathematically com-
pare the sizes of the actual values based only on their
lower bounds. Even if such comparisons can be made,
the differences and their practical effect on the perfor-
mances of random number generators may be only
marginal because of the high-dimensional equidistri-
bution property. For example, according to our empir-
ical study using various sizes of multiplier B for DX
generators with a large order k, we see no practical
differences. As stated in §5, they all pass the stringent
tests in the Crush battery of TestU01.

Because it is time consuming to find large-order
maximum-period MRGs (with the same efficiency), it
is very hard to find “optimal” parameters for gen-
erators in some particular dimensions larger than k
based on figures of merit. Here, we provide a gen-
eral guideline to avoid a bad lattice structure in a
high dimension. First, among DX-k-s generators, we
prefer the ones with a larger value of multiplier B
and/or a larger s to have more and larger nonzero
terms. On the other hand, larger values of s or larger
values of B tend to make the generator less efficient
and less portable. Second, for DL generators in (10)
and DS generators in (12), they shall have a small
lower bound for dt4k5 in t = k+1 dimensions because
they have many nonzero terms. However, from their
4k+ 15st recurrence equations in (11) and (13), respec-
tively, we can see that they are likely to have a bad
lattice structure in t = k+ 2 dimensions, especially for
DL generators. We remark that, if a generator with a
better lattice structure in high dimensions is indeed
needed, we recommend using any of the efficient
MRGs (other than minB) of order k = 201897 listed
in Tables 1–3. As mentioned in §5, MRGs with minB
listed in those tables can be useful for other purposes.

To sum up, all of our proposed MRGs of order
20,897 have a nice property of equidistribution in all
dimensions up to 20,897 with some possible bad lat-
tice structures (especially for MRGs with a small mul-
tiplier and few nonzero terms) in dimensions larger
than 20,897. However, there is no need to rule out
a generator of a large order k simply because it
has a bad lattice structure in k + 1 or k + 2 dimen-
sions. After all, no generator can claim to be a per-
fect random number generator; for most generators,
there is always a trade-off between better generat-
ing efficiency (by considering fewer nonzero terms)
and other criteria such as better lattice structure in a
higher dimension.

7. Concluding Remarks
We have found many efficient maximum-period
MRGs of a large order k with k = 71499 and k = 201897
for the prime modulus p = 231 − 1. The success-
ful search was achieved by utilizing some results

in number theory as well as some powerful fac-
torization algorithms. The large order of maximum-
period MRGs automatically gives the nice property
of high-dimensional equidistribution. We conducted
an empirical timing study and showed that, with effi-
cient implementation, the proposed generators can
be more than five times as efficient as the popular
MRG32k3a. Two key factors for the great generating
efficiency are the choices of (i) the particular modulus
p = 231 − 1 and (ii) the specific form of the multiplier
B = 2r ± 2w. In addition, all the generators reported
in this paper have extremely long periods and great
empirical performances.

With great generating efficiency and aforemen-
tioned nice properties, these MRGs would be use-
ful for many scientific applications, especially for
those applications with very large-scale simulations.
Currently, we are exploring various possibilities of
transforming large-order MRGs into nonlinear gener-
ators to enhance their security properties, an essen-
tial requirement for cryptography applications, while
maintaining most of the nice properties stated above.

Acknowledgments
This research was partially supported by the National
Science Council of Taiwan, Republic of China, Grant,
NSC98-2118-M-009-004-MY3 and NSC97-2118-M-009-002-
MY2, National Center for Theoretical Sciences, Center
of Mathematical Modeling and Scientific Computing at
National Chiao Tung University. This work was done
while the first author was visiting the Institute of Statis-
tics, National Chiao Tung University, Hsinchu, Taiwan. The
authors also acknowledge the use of the high-speed com-
puting facility provided by the University of Memphis for
this research. The authors are grateful for the comments and
suggestions by the area editor and two anonymous referees
who made a significant contribution to the improvement of
this paper.

References
Alanen, J. D., D. E. Knuth. 1964. Tables of finite fields. Sankhyā

Ser. A 26(4) 305–328.

Crandall, R., C. Pomerance. 2000. Prime Numbers: A Computational
Perspective. Springer-Verlag, New York.

Damgård, I., P. Landrock, C. Pomerance. 1993. Average case error
estimates for the strong probable prime test. Math. Comput.
61(203) 177–194.

Deng, L.-Y. 2004. Generalized Mersenne prime number and its
application to random number generation. H. Niederreiter,
ed. Monte Carlo and Quasi-Monte Carlo Methods 2002. Springer-
Verlag, Berlin, 167–180.

Deng, L.-Y. 2005. Efficient and portable multiple recursive gener-
ators of large order. ACM Trans. Modeling Comput. Simulation
15(1) 1–13.

Deng, L.-Y. 2008. Issues on computer search for large order multi-
ple recursive generators. S. Heinrich, A. Keller, H. Niederreiter,
eds. Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer-
Verlag, Berlin, 251–261.

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.



Deng, Shiau, and Lu: Large-Order Multiple Recursive Generators with Modulus 231 − 1
12 INFORMS Journal on Computing, Articles in Advance, pp. 1–12, © 2011 INFORMS

Deng, L.-Y., H. Xu. 2003. A system of high-dimensional, efficient,
long-cycle and portable uniform random number generators.
ACM Trans. Modeling Comput. Simulation 13(4) 299–309.

Deng, L.-Y., H. Li, J.-J. H. Shiau. 2009. Scalable parallel multiple
recursive generators of large order. Parallel Comput. 35(1) 29–37.

Deng, L.-Y., R. Guo, D. K. J. Lin, F. Bai. 2008a. Improving random
number generators in the Monte Carlo simulations via twisting
and combining. Comput. Phys. Comm. 178(6) 401–408.

Deng, L.-Y., H. Li, J.-J. H. Shiau, G. H. Tsai. 2008b. Design and
implementation of efficient and portable multiple recursive
generators with few zero coefficients. S. Heinrich, A. Keller,
H. Niederreiter, eds. Monte Carlo and Quasi-Monte Carlo Meth-
ods 2006. Springer-Verlag, Berlin, 263–273.

Fishman, G. A., L. R. Moore III. 1986. An exhaustive analysis of
multiplicative congruential random number generators with
modulus 231 − 1. SIAM J. Sci. Stat. Comput. 7(1) 24–45.

Knuth, D. E. 1998. The Art of Computer Programming, Volume 2: Semi-
numerical Algorithms, 3rd ed. Addison-Wesley, Reading, MA.

L’Ecuyer, P. 1996. Combined multiple recursive random number
generators. Oper. Res. 44(5) 816–822.

L’Ecuyer, P. 1997. Bad lattice structures for vectors of nonsucces-
sive values produced by some linear recurrences. INFORMS J.
Comput. 9(1) 57–60.

L’Ecuyer, P. 1999. Good parameters and implementations for com-
bined multiple recursive random number generators. Oper. Res.
47(1) 159–164.

L’Ecuyer, P., R. Simard. 1999. Beware of linear congruential gen-
erators with multipliers of the form a = ±2q ± 2r . ACM Trans.
Math. Software 25(3) 367–374.

L’Ecuyer, P., R. Simard. 2007. TestU01: A C library for empirical
testing of random number generators. ACM Trans. Math. Soft-
ware 33(4) Article 22.

L’Ecuyer, P., R. Touzin. 2000. Fast combined multiple recursive gen-
erators with multipliers of the form a = ±2q ± 2r . J. A. Joines,
R. R. Barton, K. Kang, P. A. Fishwick, eds. Proc. 2000 Winter
Simulation Conf., IEEE Press, Pistacaway, NJ, 683–689.

L’Ecuyer, P., R. Touzin. 2004. On the Deng-Lin random number
generators and related methods. Statist. Comput. 14(1) 5–9.

L’Ecuyer, P., F. Blouin, R. Couture. 1993. A search for good multi-
ple recursive random number generators. ACM Trans. Modeling
Comput. Simulation 3(2) 87–98.

Lenstra, H. W., Jr. 1987. Factoring integers with elliptic curves. Ann.
Math. 126(2) 649–673.

Lidl, R., H. Niederreiter. 1994. Introduction to Finite Fields and
Their Applications, revised ed. Cambridge University Press,
Cambridge, MA.

Marse, K., S. D. Roberts. 1983. Implementing a portable FORTRAN
uniform 40115 generator. Simulation 41(4) 135–139.

Pollard, J. M. 1974. Theorems on factorization and primality testing.
Proc. Cambridge Philos. Soc. 76(3) 521–528.

Pollard, J. M. 1975. A Monte Carlo method for factorization. BIT
15(3) 331–334.

Pollard, J. M. 1993. Factoring with cubic inetegers. A. K. Lenstra,
H. W. Lenstra Jr., eds. The Development of Number Field Sieve.
Lecture Notes in Mathematics, Vol. 1554. Spring-Verlag, New
York, 4–10.

Riesel, H. 1994. Prime Numbers and Computer Methods for Factoriza-
tion, 2nd ed. Birkhäuser, Boston.

Sezgin, F. 2006. Distribution of lattice points. Computing 78(2)
173–193.

Wu, P.-C. 1997. Multiplicative, congruential random-number gen-
erators with multiplier ±2k1 ± 2k2 and modulus 2p − 1. ACM
Trans. Math. Software 23(2) 255–265.

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.


