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SUMMARY

New bivariate survival function estimators are proposed in the case where the depen-
dence relationship between the censoring variables are modelled. Specific examples include
the cases when censoring variables are univariate, mutually independent or specified by
a marginal model. Large sample properties of the proposed estimators are discussed. The
finite sample performance of the proposed estimators compared with other fully non-
parametric estimators is studied via simulations. A real data example is given.

Some key words: Archimedean copula; Bivariate failure time data; Independent censoring Marginal modelling;
Univariate censoring.

1. INTRODUCTION

Unlike the univariate Kaplan & Meier (1958) estimator, which has the usual optimal
properties, estimators of the bivariate survival function proposed in literature have some
unsatisfactory features and are in general quite complex (Gill, 1992). Roughly speaking,
the bivariate censoring complicates the analysis. This paper considers situations when the
relationship between the censoring variables can be simplified so that estimation of the
joint survival function is more direct.

Let (X,, Yi)(i=l,...,n)ben independent and identically distributed pairs of bivariate
failure times with a common joint survival function F(x, y) = pr(X ^ x, Y^-y) and let
(CK, C2i) (i=l,...,n) be n independent and identically distributed pairs of censoring
variables with a common joint survival function G(x, y) = pr(Ct ^ x, C2 ̂  y)- Let F;(.) and
G,(.) (i = 1, 2) denote the marginal survival functions of X, Y, Cx and C2, respectively. If
we assume right censoring, the observed variables become

{Xh %) = {{Xt A Cu), (Yt A C2i)}, {5f, 5ft = {I(Xi < Cu), I(Yt < C2i)} (i = 1 , . . . , n),

where A denotes the minimum and /(.) denotes the indicator function. Denote by
H(x, y) = pi(X ^ x, Y^y) the joint survival function of observables (Xh %) (i = 1 , . . . , n).
It is usually assumed that (Xh Yt) are independent of (Cu, C2i) for all i in order to ensure
identifiability (Pruitt, 1993) of the survival function. Several nonparametric estimators of
F(x, y) have been proposed such as those by Hanley & Parnes (1983), Tsai, Leurgans &
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864 WEIJING WANG AND MARTIN T. WELLS

Crowley (1986), Dabrowska (1988), Prentice & Cai (1992) and van der Laan (1996).
Without imposing further structure on the model the expressions of these estimators, and
their limiting variance, are quite complex.

Consider the following decomposition of the survival function, whose validity relies on
the assumption of independence between the failure times and the censoring times:

H(x, y)
F<* ( 1 1 )

The survival function of the observables, H{x, y), can be estimated by the empirical survival
function,

Estimation of G(x, y), in general, is dual to the estimation of F(x, y) since (C1; C2) are also
censored by (X, Y). However, it may well be that practitioners possess useful information
which may simplify the analysis. For instance, when the relationship between Cx and C2

is known or can be modelled, the estimation of G{x, y) can be simplified. Hence in general
we will use

F(xy) (1-2)
G(x,y)

to estimate F(.,.). The denominator will be estimated differently for each proposed cen-
soring model. In § 2, we discuss estimation of G(x, y) under various simplifications to the
censoring scheme. In § 3 we discuss the large sample properties of the proposed estimators.
Simulation results which demonstrate the finite sample properties are presented in § 4,
and a real data example is given in § 5. The proofs of the results are sketched in the
Appendix.

2. THE PROPOSED ESTIMATORS UNDER SIMPLIFIED CENSORING CONDITIONS

2-1. Univariate censoring
In some studies of failure times it may be reasonable to assume that censoring is

univariate, that is, Cl = C2 = C. In the case of univariate censoring one can show that

p r ( l < % 5X = 0, dy = 1) = pr(C < Y, C < X, C > Y) = 0,

and similarly that

p r ( l > f, 5X = 1, 8y = 0) = pr(* > C, X ^ C, C > Y) = 0.

Furthermore (5X, <5>) = (0, 0) implies X= Y= C. The above relationships provide necess-
ary conditions for a univariate censoring mechanism. Under univariate censoring, the
monotonicity of a survival function implies

G(x, y) = pr(C, > x, C2 > y) = Gt(x) A G2(y), (21a)

where Gj(x) = pr(Cj > x) and G2{y) = pr(C2 > y). The quantity Gx(x) A G2(y) is called the
upper Frechet bound of G(x, y) (Genest & MacKay, 1986). Hence, under univariate
censoring, the bivariate survival function G(x, y) can be estimated by

G\x,y) = Gi(x)A62(y), (21b)
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Estimating bivariate survival functions 865

where (/,(.) is the Kaplan-Meier estimator of G,(.) (i = 1, 2). When ties are absent, (jt{t) =
#,(0/^(0 (Shorack & Wellner, 1986, p. 295), where #,(.) (i = 1, 2) are the empirical sur-
vival functions of X and f, respectively, and Pt(.) are the Kaplan-Meier estimators of F,(.)
(i = l, 2) respectively. Lin & Ying (1993) proposed a survival function estimate under
univariate censoring through the Kaplan-Meier estimator based on £, = Ct A (Xt V 7,) =
Xi V % and 5' = 1 — <5f <5? (i = 1, . . . , n). The proposed estimator provides an alternative
to the Lin-Ying estimator, and it will be shown in § 3-2 that our estimator has smaller
asymptotic variance.

2-2. Independent censoring
In some case-control studies, it may be reasonable to assume that the patients in the

case and control groups are censored via independent mechanisms. Hence,

G{x,y) = Gl(x)G2(y), (2-2a)

and a reasonable estimate of the bivariate survival function G(.,.) is given by

G\x,y) = G1(x)C2(y). (2-2b)

The independence assumption between Q and C2 can be checked by a test such as those
proposed by Oakes (1982), Pons (1986) and Dabrowska (1986).

2-3. The copula censoring model
Suppose that there exists a known function Ca(.,.) such that

G(x,y) = Ca{Gl(x),G2(y)}, (2-3a)

where Ca (.,.): [0,1] x[0, l]->[0,1] and a is a dependence parameter. If G(x, y) can be
modelled as a function of its marginals, it can be estimated by plugging estimates of the
marginals, such as the Kaplan-Meier estimates, into that function. If one can find an
estimator of a, denoted by 6t, then the estimate of the bivariate survival function G(.,.) is
given by

G(x,y) = Q{(51(x),G2(y)}. (2-3b)

There has been substantial work in modelling the dependent relationship of two variables
by separating their marginal effects (Clayton, 1978; Oakes, 1989; Genest & Rivest, 1993).
The so-called 'copula' function Ca(.,.), which by itself is a survival function on
[0,1] x [0,1], describes the local dependence structure. The parameter a measures global
association and is related to Kendall's tau, denoted by T, through the equation

-4ff
Jo Jo

C.(u,v)Ca(du,dv)-l.

In the two extreme cases of Ct = C2 (T = 1) and, where Cx and C2 (T = 0) are independent,
(2-3a) reduces to (2-la) and (2-2a) respectively.

There have been several papers on estimation of a when the dependence structure Ca(.,.)
is specified up to a but the marginal distributions remain unspecified, including the pseudo-
likelihood approach of Genest, Ghoudi & Rivest (1995), and a cumulative hazard variate
correlation approach of Hsu & Prentice (1996).
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866 WEIJING W A N G AND MARTIN T. WELLS

3. PROPERTIES OF THE PROPOSED ESTIMATORS

3-1. General
In this section, we discuss the consistency and weak convergence of the proposed esti-

mators. All the limit results are as n-+ oo. Specifically, in the development of weak conver-
gence results of «*{/*(x, y) — F(x, y)}, by (11), (1-2) and consistency of P(.,.), G\.,.) and
#( . , . ) , it follows that

, y) - H(x, y)} - ^ n^x, y) - G(x, y)}
G\x y)

^ 4 *{#(*, y) H(x, y)} ^
H(x, y) G\x, y)

= Fix, y) \j^—) n*{6(x, y) - H(x, y)}

^ ] o p ( l ) . (3-1)

Define the following processes:

w i x . y)

- Ht(z)} (i = 1, 2),
Jf7)

(3-2)

Using similar arguments as in (31) and by consistency of Ht(.) and F{(.), we can show
that

Dt(z) = - {Bt(z) + Ct(z)} + op(l) {i = 1, 2).

It is clear that each process in (3-2) converges weakly to a zero-mean Gaussian process.
We will show that, under the simplified censoring mechanisms and some mild smoothness
conditions, n*{G(x, y) — G(x, y)} and n*{P(x, y) — F(x, y)} can be expressed as the sum of
the above processes.

3-2. Univariate censoring
The proposed estimator under univariate censoring is constructed by plugging (21b)

into (1-2), that is

Note that, under univariate censoring, we set G\.) — Gl(.) = G2{) and hence G\x V y) =
G(x, y). The strong consistency and weak convergence of P(x, y) under univariate censoring
are established in the next two results.
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Estimating bivariate survival functions 867

THEOREM 1. Assume C = C1 = C2 and that C and (X, Y) are independent. Then, for x
and y such that G(x, y) > 0,

G(x,y) = G1(x)AG2{y)^G1(x)

with probability 1 if x ^ y, and

with probability 1 if x ^ y. Furthermore, for x and y such that H(x, y) = F(x, y)G{x, y) > 0,
P(x, y)^F(x, y) with probability 1.

One can show that, for the estimator in (3-3), for x ^ y, G(x, y) = 5{x) = G^x) and

nHP(x, y) - F(x, y)} = F{x, y){A{x, y) + B^x) + Cx(x)} + op{\)

= F(x, y){A(x, y) - Dt(x)} + op(l). (3-4a)

Similarly, for x ^ y, G(x, y) = G\y) = G2(y) and

nHP(x, y) - F(x, y)} = F(x, y){A(x, y) + B2(y) + C2{y)} + op{\)

= F(x, y){A(x, y) - D2(y)} + op(l). (3-4b)

THEOREM 2. Assume C = C1 = C2 and that C and (X, Y) are independent. Then, for x
and y such that H(x, y) = F(x, y)G(x, y) > 0, n*{^(x, y) — F(x, y)} converges weakly to a
mean zero Gaussian process with asymptotic variance given by:

(i) for x^y,

(ii) for

F(x,y) / f dG\u) \
-F2(x,y)\\- ~2 \; 3-6b)

[ J F(u)G2(u)}
= x, .. -F(x,y)\\- ~2 \;

G(xs/y) [ Jo F2(u)G2(u)}
where A^du) = —dF^u^F^u) and A2(du) = —dF2(u)/F2(u) are marginal hazards of X and
Y, respectively.

The limiting variance (^{x, y) can be easily estimated by plugging in empirical estimates
of each unknown component. For example, (3-5a) can be estimated by

Since each estimator in (3-7) is consistent, it is easy to see that ^ (x , y)-*a1(x, y) in prob-
ability. The asymptotic covariance of ri*{P{x, y) — F(x, y)} involves lengthy expressions
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868 WEIJING W A N G AND MARTIN T. WELLS

and is not very useful in practice; hence it is not presented. It will be interesting to compare
(^(x, y) with the asymptotic variance of the Lin & Ying (1993) estimator which is given

It is clear to see from (3-5b) and (3-8) that variances of the two estimators only differ by
one term. Since F,(u) ^ p r ( X V Y^u) (i = 1, 2) for all u and dG\.)^0, it is clear that

2

33. Independent censoring
Under the independence of the censoring time model, the proposed estimator is con-

structed by plugging (2-2b) into (1-2), that is

#(*• y) n m

Each component in (3-9) is strongly consistent. It will be shown that, under the hypothesis
C1ALC2, P(x, y) in (3-9) is also strongly consistent.

THEOREM 3. Assume that both Cx and C2 and (C ls C2) and (X, Y) are independent. Then,
for x and y such that G(x,y)>0, G\x, y) = Gl{x)G2{y)^G{x, y) with probability 1.
Furthermore, for x and y such that H(x,y) = F(x,y)G(x,y)>0, P(x,y)-*F(x,y) with
probability 1.

To deduce weak convergence if Q and C2 are independent, using the notation in (3-2)
one can write

n*{P(x, y) - F{x, y)} = F(x, y){A(x, y) + Bt(x) + d ( x ) + B2(y) + C2(y)} + op{\)

= F(x, y){A(x, y) - Dt(x) - D2(y)} + Op(l). (3-10)

THEOREM 4. Assume that both Cx and C2 and (Cu C2) and (X, Y) are independent. Then,
for x and y such that H(x, y) = F(x, y)G(x, y) > 0, nk{P{x, y) — F(x, y)} converges weakly to
a zero-mean Gaussian process with the asymptotic variance, (^{x, y), equal to

r H(x,y) , 1 ppr(l^x,\_Hi{x)H2{y) + ^ ) JQ
1 Cx p r ( ^ e [u, u

^)Jo+ H2(y)

H2(t;)

du), 8X = 1, Y^y)-H(u,

- jf^ AMu) + A^uJA^)}]). (311)
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Estimating bivariate survival functions 869

Note that the expression in (311) is quite complex, but each component in (311) is
estimable, so it is easy to construct a consistent estimator by plugging in the empirical
versions of the unknown functions.

3-4. General censoring condition
Under the marginal model in (2-3a), one can estimate F(x, y) by plugging (2-3b) into

(1-2), that is

(312)

where a is an estimator of a. As long as Cx(.,.) satisfies some smoothness conditions and
& is a reasonable estimator of a, then the estimator will be consistent and converge weakly
to G(x, y) at rate n~* and so will P(x, y). Specifically, one can write

G\x, y) - G(x, y) = CAG,{x), G2{y)} - CAG^x), G2{y)}

+ Q{G\(x), G 2 (J0} - Ca{G\(x), C (3-13)

If we assume that Ca(.,.) is twice differentiable in both arguments, a Taylor expansion
yields

dCa(u, v)

du

dCx(u,v)

du2

d2Ca(u, v)

dv

1 d2Ca(u, v)

dv2

{C2(y)-G2(y)}

{G2{y)-G2{y)}2

(u*,v*)

du dv
(314)

where (u*, v*) e (0,1) x (0,1) are intermediate values. If Ca(.,.) is twice differentiable at a,

da 3a2

(3-15)

where a* is an intermediate value. The following theorem states that, by strong consistency
of G,(.) (i = 1, 2) and & and boundedness of the derivatives, strong consistency of G\x, y)
and P(x, y) can be established.

THEOREM 5. Suppose the marginal model in (23a) holds, Ca{.,.) is twice differentiable
and has bounded derivatives in the two arguments, ^((.)-»G,(.) ( i = l , 2) and d->a with
probability 1. Then, for x and y such that G(x, y) > 0,

with probability 1, and hence, for x and y such that H(x, y) = F(x, y)G(x, y) > 0,
P(x, v)-+F(x, y) with probability 1.

 at N
ational C

hiao T
ung U

niversity L
ibrary on D

ecem
ber 7, 2011

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 

http://biomet.oxfordjournals.org/


870 WEIJING WANG AND MARTIN T. WELLS

To simplify the notation, define

8 C i ) V
K1(u,v,a) = — — , K2{u, v, a) = ,

Ctt(u,v) du CJu,v) dv
(316)

K3{u, v, a) =Ca{u, v) da

By (314) and (316), one can write

I (x), G2(y)} - CAG&), G2(y)}] = K, {G^x), G2(y), aJD
^ V ^ J y)

+ K2{G1(x),G2(y),oi}D2(y) + Rln.

(3-17a)

Similarly, one can write

j n
O(x,y)

(317b)

It will be shown that the remainder terms, Rln and i?^, are both op(l). It follows that

-^— n*{G\x, y) - G(x, y)} = K, {Gx(x), G2(y), a}Dx(x) + K2{Gt(x), G2(y), a}D2(y)

+ K3 {G^x), G2(y), a}n*(<5 - a) + op(l). (318)

Hence, by (31),

n*{P(x, y) - F(x, y)} = F(x, y)\_A{x, y) - Kt {Gt(x), G2(y), o^D^x)

-K2{Gi(x),G2(y),a}D2(y)

- K3 {G^x), G2(y), a}n*{& - a)] + op(l). (319)

Note that, under univariate censoring,

C{u, v) = uAv = {(u + v)-\u-v\

which is continuous but not differentiable at u = v. However, under the independence of
Cy and C2, all the models reduce to C(u, v) = uv, which satisfies the differentiability con-
dition. In this case, Kx{u, v) = K2(u, v) = 1. Thus Theorem 4 is a special case of the following
more general result

THEOREM 6. Suppose the marginal model (2-3a) holds and
(i) Ca(.,.)etf2,
(ii) Ca is twice differentiable at a and both derivatives are bounded.
(iii) n*(&-a) = Op(l).

Then, for x and y such that H(x, y) = F(x, y)G(x, y) > 0, n*{/*(x, y) — F(x, y)} converges
weakly to a zero-mean Gaussian process. When a is known, the asymptotic variance of
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Estimating bivariate survival functions 871

n*{P(x,y)-F(x,y)}is

2K1{G1(x),G2(y),a

H(x,y)

1
1 + " - l0 H2(v)

x pr(£ e[u,u + du), dx = 1, f"^y) — H(u,

o

When a is unknown, from (319) it can be seen that (^{x, y) contains extra terms
involving the variance of n*(a — a) and its covariances with A(x, y) and Dt(.) (i = 1, 2)
which, however, may be difficult to derive even when the form of & is given. In this case,
(^{x, y) can be estimated using the bootstrap.

Generally speaking, the proposed estimator in (312) imposes a semiparametric structure
on (Ci, C2) and hence is subject to model misspecification and the error produced by <£
The robustness of the proposed estimator will be studied through simulations.

4. SIMULATION RESULTS

A series of 1000 simulations were carried out for comparing the finite sample
(n = 60, 250) performance of different estimators of F(x, y), namely the Dabrowska (1988)
estimator, the Prentice & Cai (1992) estimator, the Lin & Ying (1993) estimator and the
proposed simplified estimators under different censoring mechanisms. In the simulations,
(X, Y) and (Cu C2) are both generated by the Clayton (1978) family using the algorithm
discussed in Prentice & Cai (1992). The dependence structure of Clayton's family is of
the form

Ca(u,t;) = (u1-a + i ; 1 - a - l ) - 1 « a - 1 ) (u, ve (0,1)),

where

 at N
ational C

hiao T
ung U

niversity L
ibrary on D

ecem
ber 7, 2011

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 

http://biomet.oxfordjournals.org/


872 WEIJING WANG AND MARTIN T. WELLS

As <x->oo, T->-1 and as a-+l , T ->0 . We will denote by xxy and TC1IC2 the Kendall's tau
measures of (X, Y) and (C l5 C2), respectively. In each simulation run, marginal censoring
rates are around 30-40%.

Table 1 presents the simulation results under univariate censorship for xx y = 0-67. Four
estimators are compared based on the average bias and standard deviation on 9 points.
Relative performance of the four estimators is quite consistent regardless of xxy and the
sample size. The Dabrowska and Prentice-Cai estimators perform very similarly and have
slightly smaller variation than the two simple estimators specified for univariate censored
data. The proposed estimator in (3-3) in general outperforms the Lin-Ying estimator in
terms of both accuracy and precision. However, the differences in bias and standard

Table 1. Simulation summary statistics for estimators of bivariate survival
probabilities under univariate censoring and (X, Y)~Clayton (zxy = 067)

based on 1000 samples

y

0O92 True

Dab.

P.-C.

L.-Y.

(3-3)

0336 True

Dab.

P.-C.

L.-Y.

(3-3)

0-861 True

Dab.

P.-C.

L.-Y.

(3-3)

x = O092

0-854

— 1-35
(2-27)

— 1-35
(2-27)

— 1 61
(2-31)

-0-34
(2-29)

0-697

— 1-55
(2-86)

-1-57
(2-86)

- 2 1 3
(2-96)

-1-78
(2-92)

0-456

-2-53
(3-46)

-2-55
(3-46)

-3-27
(3-56)

-2-78
(3-48)

n = 250
x = 0-336

0-697

-3-30
(2-99)

-3-31
(2-99)

-3-97
(311)

-3-31
(302)

0-625

-2-56
(309)

-2-59
(3-09)

-2-93
(3-20)

0-46
(314)

0-427

-2-77
(3-42)

-2-85
(3-42)

-3-65
(3-57)

- 3 1 7
(3-48)

x = 0-829

0-456

-2-26
(3-56)

-2-28
(3-56)

-3-41
(3-66)

-2-28
(3-56)

0-427

— 2 31
(3-50)

-2-39
(350)

— 3-41
(3-64)

-2-40
(355)

0-369

-1-78
(3-40)

— 1 91
(3-40)

— 2-41
(3-56)

212
(3-48)

x = 0-092

0-854

-2-80
(4-56)

-2-81
(4-56)

-3-26
(4-58)

— 1-30
(4-54)

0-697

-3-50
(6-26)

-3-55
(6-26)

-4-77
(6-39)

-3-54
(6-32)

0-456

-3-63
(7-29)

-3-72
(7-29)

— 6 51
(7-48)

-3-60
(7-32)

n = 60
x = 0-336

0697

-5-46
(6-03)

-5-52
(6-03)

-7-30
(618)

— 5-83
(6-06)

0-625

— 5-38
(647)

-5-50
(6-47)

-5-87
(6-64)

0-73
(6-55)

0-427

-4-52
(712)

-4-80
(712)

-7-22
(7-40)

-4-39
(7-24)

x = 0-829

0-456

-2-26
(709)

-2-36
(7O9)

-3-80
(7-30)

-2-63
(708)

0-427

- 3 1 4
(707)

-3-43
(707)

-4-31
(7-34)

- 3 1 5
(712)

0-369

-2-93
(701)

-2-50
(702)

-2-38
(7-34)

6-98
(7-22)

True, true survival probability; Dab., Dabrowska estimator; P.-C, Prentice-Cai estimator;
L.-Y., Lin-Ying estimator; (3-3), estimator proposed in (3-3).
In each cell, top figure is average bias (x 103) of estimate; bottom figure, in parentheses, is
standard deviation (x 102) of estimate.
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Estimating bivariate survival functions 873

deviation among all the estimators are no greater than the order of 10 ~3. We found these
conclusions also held for xxy = 2. Table 2 compares the proposed estimator in (3-9) and
the two fully nonparametric estimators under independent censorship (Tei>C2 = 0) and
zxy — 067. The proposed estimator behaves roughly as the Dabrowska and Prentice-Cai
estimators at most points but seems to be more variable in the tail region.

Table 3 examines the performance of the proposed estimator in (3-12) for n = 60, when
{CUC2) is generated from Clayton's family with moderate correlation (TCI,C2 = 0-5) but
fitted by three different semiparametric models, namely Clayton's family, Frank's family
(Genest, 1987) and the log-copula family (Genest & Rivest, 1993). The dependence struc-
ture for Frank's family is of the form

,4.2a,

where log, denotes the logarithm with base a(a>0), which is related to Kendall's tau by

T = 4y - 1 {£ 1 (y ) - l } ) (42b)

Table 2. Simulation summary statistics for estimators of bivariate survival
probabilities under independent censoring and (X, Y)~ Clayton (txy = 0-67)

based on 1000 samples

y

0-092 True

Dab.

P.-C.

(3-9)

0-336 Trae

Dab.

P.-C.

(3-9)

0-829 True

Dab.

P.-C.

(3-9)

x = 0-092

0-854

0-25
(2-35)

0-25
(2-35)

0-26
(2-42)

0-697

-0-57
(3-06)

-0-58
(3-06)

-0-64
(3-24)

0-456

- 1 1 2
(3-62)

- 1 1 6
(3-62)

— 1-58
(3-75)

/i = 250
x = 0-336

0-697

- 2 1 8
(314)

-2-20
(314)

- 2 1 6
(3-30)

0-625

-2-39
(3-29)

-2-48
(3-30)

- 2 1 9
(3-76)

0-427

-1-64
(3-53)

-1-86
(354)

— 1 89
(4-06)

x = 0-829

0-456

0-68
(3-72)

0-24
(3-72)

0-29
(3-90)

0-427

-0-09
(3-68)

-0-26
(3-69)

-0-08
(4-18)

0-369

004
(3-42)

-0-71
(3-43)

-0-67
(4-45)

x = 0-092

0-854

-0O7
(4-69)

-0-08
(4-69)

-0-07
(4-85)

0-697

0-59
(6-07)

0-51
(607)

0-84
(6-33)

0-456

-3-70
(711)

-3-83
(711)

-3-98
(7-40)

n = 60
x = 0-336

0-697

-1-06
(6-21)

- 1 1 3
(6-21)

0-32
(6-60)

0-625

-0-10
(6-45)

-0-52
(6-47)

0-27
(7-40)

0-427

-4-21
(6-80)

-4-97
(6-81)

-4-42
(7-84)

x = 0-829

0-456

117
(7-04)

101
(7-04)

0-69
(7-36)

0-427

1-58
(6-99)

0-62
(6-98)

0-22
(7-99)

0-369

-1-04
(698)

— 391
(689)

-2-45
(9-05)

True, trae survival probability; Dab., Dabrowska estimator; P.-C, Prentice-Cai estimator
proposed in (3-9).
In each cell, top figure is average bias (x 103) of estimate; bottom figure, in parentheses, is
standard deviation (x 102) of estimate.
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Table 3. Robustness study for the estimator pro-
posed in (3-12) when (X, Y) ~ Clayton (T,,, = 0-67)
and ( d , C2) ~ Clayton (TCIJC2 = 05) but '(Cu C2)
is fitted by different models without estimated

parameters; n = 60

y

O092 True
fidnr a

/?Frk
•* a

PI*
0-336 True

£>dn
^ c

/?
tfFrk
^ a

ff
ft
PI*

0829 True
f a n

# a
F r k

/?"
Pi
PI*

x = 0-092

0854

-2-72 (4-90)

- O 5 0 (4-79)

-2-24 (4-78)

1-79 (4-90)

- 0 4 8 (4-79)

-3-85(6-10)

0697

-4-83 (6-51)

- 0 0 4 ( 6 1 9 )

-3-30(616)

-2-45 (6-49)

024 (619)

-3-38(6-54)

O346

-1-52(7-37)

1-51 (7-21)

- 0 5 8 (718)

114 (7-38)

202 (7-20)

1-11 (716)

x = O336

0698

-3-02(6-32)

-118(6-44)

-4-49 (6-41)

- 0 6 1 (6-32)

- 0 9 7 (6-43)

-4-86 (6-76)

0625

-4-91 (711)

- 0 3 3 (6-96)

-8-27 (6-87)

1-99 (7-09)

O50 (6-88)

-7-37(708)

0-427

- O 8 0 (7-82)

3-95 (7-54)

-2-73 (7-43)

8-20 (7-87)

5-54 (7-47)

- 0 5 8 (7-35)

x = 0829

0346

-2-90(7-32)

-3-32(7-46)

-5-42 (7-44)

- 0 2 2 (7-34)

-2-84(7-41)

-4-79 (7-39)

0427

-3-46(7-73)

-O08 (7-79)

-6-72(7-67)

5-50 (7-80)

-4-59 (7-74)

1-56 (7-62)

0369

-1-43(819)

6-26 (8-33)

-3-11 (812)

14-68 (8-29)

9-53 (8-31)

049 (8-02)

True, true survival probability; Cln, Qayton; lc, log-copula;
Frk, Frank.
In each cell, first figure is average bias (x 103) of estimate;
second figure, in parentheses, is standard deviation (x 102)
of estimate.

where y = —loga and Dt(.) is the Debye function of order 1 defined by

The log-copula family in general has two parameters with the dependence structure

Ca(u, t;) = exp(ay[l - {(1 - logu)* + 1 + (1 - l o g t ; ) ^ 1 - l}1/ (a+1)]). (4-3a)

Letting ay = 1, we have

Recall that the estimator in (312) has the following general expression:

p fi{xy)
(X'y) Q f ^ x
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Estimating bivariate survival functions 875

Denote by P^° the estimator when Ca(.,.) is fitted by Clayton's family and a is the value
corresponding to the true value of TCitCa. If T = O 5 in equation (41b), a = 3. Similarly,
denote by P^lk the estimator in (312) by fitting Frank's family with a = 5-8, which is
obtained by inverting equation (4-2b). Now Pl° is the proposed estimator by fitting the
log-copula family with a = 33. When the value of TCI>C2 is unknown, it is estimated using
the method by Brown, Hollander & Korwar (1974), which adjusts the relative concord-
ance/discordance probabilities of (Cu C2) by the Kaplan-Meier estimators of G,(.) (i =
1, 2). Once an estimate of TCIC2 is obtained, the formulae in (41b), (4-2b) and (4-3b) can
be inverted to estimate the corresponding values of a, denoted by 6t. In principle, P?* can
be thought of as the possibly best candidate for (312) since Ca(.,.) is fitted by the true
dependence structure and the true parameter value. Also an estimate of a obtained through
estimating Kendall's tau, even under consistency, often produces large variation (Maguluri,
1993). We used this method to estimate a in the simulations since it is easy to compute
and also it may be interesting to see what is the effect of such a poor estimate of a nuisance
parameter on the performance of P(x, y). Table 3 shows that all the estimators perform
reasonably well even when the model is misspecified. The effect of estimating a seems to
vary for different models. Estimator Pf* has much poorer performance than that ofP^°
in the tail region but is fine at other points. The differences between P& and Pa for Frank's
model and the log-copula model are less obvious. In the case with n — 250 the biases were
roughly the same but the variances were about half the size of those with n = 60.

5. A REAL DATA EXAMPLE

In this section, we study the well-known dataset discussed in Holt & Prentice (1974)
and Lin & Ying (1993). The dataset consists of 11 paired survival times, in days, of closely

Table 4. Survival days of skin grafts on burn patients

(a) Raw data

Patient i
1 2 3 4 5 6 7 8 9 10 11

1 , 37 19 57+ 93 16 22 20 18 63 29 60 +
f, 29 13 15 26 11 17 26 21 43 15 40

(b) Estimation ofG{x V y) using the method proposed in (21b)
xv y

37 19 57 93 16 22 26 21 63 29 60

G^x) 1 1 1 05 1 1 1 1 0-5 1 0-75
G2(y) 1 1 1 1 1 1 1 1 1 1 1
GxhG2 1 1 1 0-5 1 1 1 1 0-5 1 0-75

(c) Estimation of C{x V y) using the Lin-Ying approach

37 19 57 93 16 22 26 21 63 29 60

<5C

<5LY(.)

0
1

0
1

1
1

0
0-5

0
1

0
1

0
1

0
1

0
05

0
1

1
075

%i, close match survival time; %, poor match survival time.
Ci(x) A (j2(y), proposed estimator of G{x V y).
<?LY(* V y), Lin-Ying estimator of G(x V y).
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and poorly matched skin grafts on the same burn patient. This is a perfect example of
univariate censorship. From the raw data listed in Table 4(a), it can be seen that, for the
two singly censored data points, (57 + , 15) and (60 + , 40), the censored component must
be greater than the observed component. Tables 4(b) and (c) show how G(x V y) is esti-
mated using the method proposed in (21b) and the Lin-Ying estimator, respectively. For
this dataset, <5? = 1 (i = 1 , . . . , n) and hence G2(y) = 1 for all y, which implies that
Gt(x) A C2(y) = G\(x) for all x. Also note that 5\ = 1 - <5f5J = 1 - <5f (i = 1, . . . , n), that
dc determines the censoring status of C = X V ¥ using the Lin-Ying estimator of G\x V y)
and that 1 — 8X determines the censoring status for computing Gt(x). Thus the two esti-
mators coincide with each other in this example.
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A P P E N D I X

Proofs

In the following proofs, (fl, &, &) denotes the underlying probability space. Strong consistency
results for the marginal quantities fit{.), Pt(.) and G,(.) (i = 1, 2) will be used. Since the univariate
censoring structure does not satisfy the differentiability condition on C(.,.), Theorem 1 is proved
separately. Theorem 3 is a special case of Theorem 5 and thus only the proof of the latter is
provided. The weak convergence derivations in Theorems 2, 4 and 6 are also presented here.

Proof of Theorem 1. Consider the case that x ^ y; by monotonicity of the survival function,
Gj(x) < G2(y). If G^x) = G2(y), then, by strong consistency of <3,(.) (i = 1, 2), G^x) = G2(y) with
probability 1. Consider another case when x > y and Gj(x) < G2(y). We would like to show that
G\x, y) = G\(x) A 02(y)-*G1(x) with probability 1. Note that, for any x > y with Gt(x) < G2(y) and
coefi,

|G\x, y) - G(x, y)\ = |6x(x, o>) - Gx(x)|/{(^(x, a>) *S G2(y, co)}

+ \62(y, © ) - Gl(x)\I{Gl(x, co) > C2(y, co)}, (A-l)

where <3,(t, co) denotes the value of the random function (J,(.) evaluated at t for the outcome coefi.
We show that, for any x > y with G^x) < G2(y),

pr[lim suptG^x, co) > G2{y, co)}] = 0.

Letting G2(y) — Gi(x) = S> 0, we get

{co: G^x, co) > G2(y, co)} <= {co: |G\(x, co) - G^x)] + \G2(y, co) - G2(y)\ >5}. (A-2)

It can be shown that, for two random variables X(co) and Y(co) and any £ > 0, there exists 5 > 0
such that

{co: \X(co)\ + | Y(co)\ >e}^ {co: \X(co)\ > 3} U {co: | Y(co)\ >5}.

Hence we can conclude that there exists <5 * > 0 such that

{<o:G1(x,a>)>G2(y,(o)}s{aj:\Gl(x,(o)-Gl(x)\>5*}U{<o:\G2{y,<o)-G2{y)\>8*}.
(A-3)

Taking lim sup in (A-3) and applying a property of the lim sup function (Billingsley, 1985, p. 60),
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Estimating bivariate survival functions 877

we get that there exists <5* > 0 such that

hm sup{co: G\(x, CO) > G2{y, co)}

c hm sup{co: \G\(x, co) - Gx(x)\ ^ <5*} Ulim sup{co: |G2(y, co) - G2(y)\ ^ 5*}.

Strong consistency of G,(.) (i = 1, 2) leads to pr[lim sup{a>: G\(x, CO) > &2(y, co)}'] = 0. Hence by
(Al) and monotonicity it follows that, for x>y,

KG^x) A G2(y)} - G^x)] = IG^x)- Gx(x)| (A-4)

with probabihty 1. By strong consistency of G\(.), we can show that, for any e > 0,

pr sup KG^x) A C2(y)} - Gx(x)| > e U pr |sup |G\(x, co) - GL(x)| > el = 0.
\_x>y J I x )

Similar arguments can be established for the case when x < y. •

Proof of Theorems 3 and 5. Since Theorem 3 is a special case of Theorem 5, we shall prove the
more general result. Consider the expression in (3-13). We first show that

Ca{G\(x), 62{y)} ^CAGAx), G2(y)}

with probabihty 1.
Since Cx(.,.) has continuous first and second derivatives in both arguments and is defined on a

compact set, the derivatives are bounded. Specifically, there exist M, < oo (i = 1, 2, 3,4, 5) such that

8Ca(u, v)

du

1 d2Cx(u,

dCa(u, v)

v)
dv2

dv

"- 4 '

1 d2CJu, v)

)
3u Si;

du2

By the Taylor expansion in (3-14), for any x, y and co e il, it follows that

sup |G(x, y; co) - G(x, y)\ < M1 sup \d(x, co) - Gi(x)\ + M2 sup |C2(y, co) - G2(y)\
x,y x y

+ M3 sup \6t(x, co) - Gt(x)\2 + M4 sup \62(y, co) - G2(y)\2

x y

+ M5 sup | ^ ( x , co) - Gx(x)| \62(y, co) - G2(y)\. (A-5)
x,y

By similar arguments as in the previous proof and taking the hm sup, one can show, for any e > 0,
there exists 5 > 0 such that

pr I co: sup | G(x, y; co) - G(x, y)\>e>

< pr j co: sup | G\(x, CO) - Gt(x)| ^ 5IMX \ + pr -I co:: sup \G2(y,co)-G2(y)\> 5/M•}
+ pr|a): sup l^iCx, co) - G^x)? > 5/M3\ + pr|o>: sup \C2(y, co) - G2(y)\2 > 5/MA

+ pr L: sup |(S^x, co) - Gt(x)| I(?2(y, to) - G2(y)\ > 8/Af\. (A-6)

Since each M( is bounded and thus 5/Mt > 0 for 8 > 0, each term on the right-hand side of (A-6)
has probability zero. Hence

pr < co: sup \G\x, y; co) - G(x, y)\ ^ e\ = 0
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and Ca{&i{x), 62(y)} -*Ctt{Gi{x), G2(y)} with probability 1. By (3-15), we can show that, if dCJda
and d2Cx/da.2 are bounded and & ->a with probability one, then

C6{&i(x), G2(y)} - Ca{6i(x), G2(y)} = 0

with probability 1. Therefore G\x, y)-+G(x, y) with probability 1. By (1-2) it is easy to show that
P(x, y) -* F(x, y) with probability 1. •

Proof of Theorems 2, 4 and 6 on weak convergence ofn*{P{x, y) — F(x, y)}. Each process in (3-2)
converges to a mean zero Gaussian process. By (3-4), (310) and (319), ni{P(x,y) — F(x,y)} can
be expressed in terms of the sum of these processes and thus will converge to a mean zero Gaussian
process on the bivariate Cadlag space on [0, tj] x [0, t2], where (tlt t2) is such that H(tlt t2) > 0.
To derive its asymptotic variance in each case, the following expressions are useful:

x, v) - H(x, y)} = „"* f {/(#, >x,f^y)- H(x, y)},

*{^(x) - Hx(x)} = n~* f {/(J?, ̂  x) - H^x)},
1 = 1

±{fi2(y) - H2(y)} = «"* £ {I(% >y)- H2(y)},

i-i Jo "2M J

where

dM2t(u) = ( , ^ , f ) ( > ) ^ ( ) ,
(A-8)

dM2,(«) = ^ / (^ ̂  u, 5', = 1) - / ( ? > u)A2(du).

Denote by avar(.) the asymptotic variance of (.)• By elementary probability arguments and some
known results on the univariate Kaplan-Meier estimator, it can be shown that

avar{/l(x,y)} = — — - 1, avar{B((t)} = ^
n(x,y)

avar

acov {A(x, y), Bt(x)} = - —— + 1, acov {A(x, y), B2(y)} = - —— + 1,
(x) "(y)

-cov {B l W ,C2(y)}-_ J o HM

acov{B2(y),— * ' ^^elu,u + du),S'=l,t^y)-H(u,y)A1(du)1 C*
'), Ci(x)} = ——

ni\y) Jo
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tf(tl,l,)"UUM'"r"lv'

Also, by integration by parts, one can derive the following useful identities:

rm=-i ' i»=sk- i + rSj ( i = i > 2 ) - (A9>

Hence

avar{D((z)} = l - Pt ' " , >, acov{X, D,(z)} = - ff (i = 1,2). (A-10)
Jo Fi(u)Gf(u) Jo F,(u)Gf(w)

The identities in (A-9) and (A-10) are then used to deduce (3-5b) and (3-6b). D
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