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Abstract: We study nonparametric estimation of Kendall’s tau, τ , for bivariate

censored data. Previous estimators of τ , proposed by Brown, Hollander and Kor-

war (1974), Weier and Basu (1980) and Oakes (1982), fail to be consistent when

marginals are dependent. Here we express τ as an integral functional of the bivari-

ate survival function and construct a natural estimator via the von Mises functional

approach. This does not necessarily yield a consistent estimator since tail region

information on the survival curve may not be identifiable due to right censoring.

To assess the magnitude of the inconsistency we propose some estimable bounds

on τ . It is shown that estimates of the bounds shrink to provide consistency if

the largest observations on both marginal coordinates are uncensored and satisfy

certain regularity conditions. The bounds depend on the sample size, on censoring

rates and, in particular, on the estimated probability of the unknown tail region.

We also discuss using the bootstrap method for variance estimation and bias cor-

rection. Two illustrative data examples are analyzed, as well as some simulation

results.
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1. Introduction

In many biomedical applications interest focuses on the dependence relation-
ship between two lifetime variables. For example, the analysis of data on lifetimes
of twins has been used by geneticists as a tool for assessing genetic effect on mor-
tality (Hougaard, Harvald and Holm (1992)); in AIDS studies, the dependence
between the time from HIV infection to AIDS and the time from AIDS to death
reveals useful information about the evolution of disease process. Kendall’s tau,
τ , known as a rank correlation measure, can serve as a simple summary mea-
sure of association between two random variables. In contrast to the well-known
Pearson correlation coefficient, τ does not require knowledge of the parametric
form of the marginal distributions. Its rank invariant property makes it suitable
for measuring dependence in non-Gaussian lifetime models. Additionally it has
been shown that dependence parameters in the bivariate semi-parametric models
proposed by Gumbel (1960), Clayton (1978) and Frank (1979), to name a few,
are intimately related to τ . Parameters in these models can then be identified
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via τ (see Genest (1987), Oakes (1989), Genest and Rivest (1993), Wang and
Wells (2000)).

Censoring is a common phenomenon in analysis of lifetime data and it is
essential that estimates of τ be available for bivariate censored data. However,
few results for this fundamental problem have appeared in the literature. Brown,
Hollander and Korwar (1974), Weier and Basu (1980) and Oakes (1982) proposed
estimators of τ under censoring, but none of the estimators are consistent when
the true value of τ is not equal to zero, that is, when the marginals are dependent.
The bias of these estimators increases as the degree of dependence increases. In
this article we express τ as an integral of the bivariate survival function. Adopting
the ideas of von Mises (1947), a natural way to estimate τ is to plug a suitable
bivariate survival estimator into the integral form that defines τ .

In the past decade substantial research effort has been devoted to nonpara-
metric estimation of the bivariate survival function for censored data. A number
of nonparametric estimators of the bivariate survival functions, such as those
by Campbell (1981), Dabrowska (1988), Prentice and Cai (1992), Lin and Ying
(1993), van der Laan (1996) and Wang and Wells (1997), have appeared in the
literature. However, just as Kaplan-Meier integrals are biased in the univariate
case (Stute (1994)), the von-Mises-type estimator of τ is asymptotically nega-
tively biased. To handle the problem we propose some estimable bounds on the
Kendall’s tau measure. It will be seen that when the largest observations are
uncensored in each marginal coordinate, the bounds shrink to give consistency.

In the next section, notation and previous estimators of τ are introduced. In
Section 3 we propose estimators and derive their properties. An application of the
bootstrap method for variance estimation and bias correction is also discussed.
Illustrative real data examples and simulation results are presented in Section 5.
Concluding remarks are given in Section 6.

2. Preliminaries

2.1. Notation

Let (T1, T2) be possibly correlated random variables, and let (T1i, T2i) and
(T1j , T2j) (i �= j) be independent realizations from (T1, T2). The (i, j)th pair is
called concordant if (T1i − T1j)(T2i − T2j) > 0 and discordant if (T1i − T1j)(T2i −
T2j) < 0. The population version of Kendall’s tau is defined as the difference of
concordance and discordance probabilities between the (i, j)th pair. If T1 and T2

are continuous, τ = pr {(T1i−T1j)(T2i−T2j) > 0}−pr{(T1i−T1j)(T2i−T2j) < 0}.
It is easy to see that −1 ≤ τ ≤ 1 and if (T1, T2) are independent, τ = 0. In the
absence of censoring one observes i.i.d replications of (T1, T2). Then τ can be
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easily estimated by taking the difference of sample concordance and discordance
proportions. This is equivalent to applying the formula,

τ̂ =
(n

2

)−1 ∑
1≤i<j≤n

aijbij, (2.1)

where aij = 1 if T1i < T1j , aij = −1 if T2i > T2j and bij is similarly defined.
Notice that the “score”, aijbij, is 1 if the (i, j) pair is concordant and is −1 if
discordant. In the complete data setting, it has been shown that τ̂ in (2.1) is a U-
statistic, is an unbiased estimate of τ , and n1/2(τ̂ − τ) is asymptotically normal.
See Hoeffding (1948) for further details on the U-statistic representation.

To account for this, Kendall (1962, p.34) proposed two formulas for comput-
ing estimates of τ . In both cases, the score is set to zero if a pair has ties, that
is aij = 0 if T1i = T1j and bij = 0 if T2i = T2j . The first formula, called the
“unconditional tau” by Davis and Quade (1968), uses (2.1) with modified scores
for ties. The second formula, which excludes tied pairs in computing the total
number of combinations, is given by

Γ =
∑n

i,j=1 aijbij

(
∑

i,j a2
ij

∑
i,j b2

ij)1/2
. (2.2)

It is easy to see that Γ ≥ τ̂ in all cases and equality holds if there are no ties.
In the case of right censoring, the observable variables are X = T1 ∧ C1,

Y = T2∧C2, δj = II(Tj∧Cj = Tj) (j = 1, 2), where (C1, C2) are a pair of nuisance
censoring variables, “∧” denotes minimum, and II(A) is the indicator of the event
A. Let F (x, y) = pr(T1 > x, T2 > y), Fj(·) (j = 1, 2), H(x, y) = pr(X > x, Y >

y) and Hj(·) (j = 1, 2) be the joint survival function of (T1, T2), the marginal
survival function of Tj (j = 1, 2), the joint survival function of (X,Y ), and the
marginal survival functions of X and Y , respectively. Denote the supports of F

and H by SF = {(x, y) : F (x, y) > 0} and SH = {(x, y) : H(x, y) > 0}. The
bivariate censored sample is denoted by {(Xi, Yi, δ1i, δ2i), i = 1, . . . , n}.

When censoring is present, the relative concordance/discordance relationship
is not clear for some pairs. Figure 1 lists possible pair relationships under cen-
soring. In Figure 1 a point is used to denote an observation which is completely
observed. A singly censored observation with δ1 = 0 and δ2 = 1 is denoted by
a right arrow indicating that the possible failure time is located there, similarly
if δ1 = 1 and δ2 = 0. When δ1 = 0 and δ2 = 0, the true failure time is located
in the upper right quadrant relative to the observed point. In Figure 1 the only
certain pair relationships are (i)-(iii). For example in (i), any point on the right
arrow would yield a concordant relationship for the pair.
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Figure 1. Possible pair relationship between bivariate censored data.

2.2. Previous estimators of τ

Several estimators of τ have been proposed that modify the scores for those
pairs whose concordance/discordance relationships are not clear. Brown et al.
(1974) proposed an estimator of τ which utilized the marginal Kaplan-Meier esti-
mates. Except for ties, they assigned aij = 2 pr{T1i > T1j | (Xi,Xj , δ1i, ÎF 1)}−1
and bij = 2 pr{T2i > T2j | (Yi, Yj, δ2i, ÎF 2)} − 1, where ÎF i(·) (i = 1, 2) are the
marginal Kaplan-Meier estimators of Fi(·) (i = 1, 2), respectively. Table 1 lists
the values of aij given in Brown et al. (1974). The values of bij are similarly
defined.

Table 1. Values of aij of Brown et al.’s estimator.

(δ1i, δ1j) Xi > Xj Xi = Xj Xi < Xj

(1, 1) 1 0 -1
(0, 1) 1 1 2{ÎF 1(xj)/ÎF 1(xi)} − 1
(1, 0) 1 − 2{ÎF 1(xj)/ÎF 1(xi)} -1 -1
(0, 0) 1 − {ÎF 1(xj)/ÎF 1(xi)} 1 − {ÎF 1(xj)/ÎF 1(xi)} {ÎF 1(xj)/ÎF 1(xi)} − 1

To normalize the measure to lie between [−1, 1], Brown et al. (1974) adopted
Γ as their estimate of τ , denoted as τ̂B. Note that this method takes partial
information provided by the Kaplan-Meier estimates into account. For singly
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censored observations, as illustrated in Figure 1 (iv) and (v), this approach seems
quite intuitive for determining the unknown relationship. However for pairs with
doubly censored observations, as in Figure 1 (vi)-(viii), the modifications may
not be sufficient because joint information is ignored.

Weier and Basu (1980) discussed other ways of modifying the scores. One
alternative they proposed was to impute censored observations by their expected
values under Kaplan-Meier estimates. All methods, as discussed in Weier and
Basu (1980), suffer from the same drawback as τ̂B, since only marginal adjust-
ments are made. It should be mentioned that the joint relationship becomes more
important when the association becomes higher. Consequently these estimators
are inconsistent under τ �= 0 and have bias increasing in τ .

Oakes (1982) proposed an estimator of τ for testing the independence hy-
pothesis. It has the form (2.1) with aij = 1 if δ1i = 1 and Xi < Xj ; aij = −1
if δ1j = 1 and Xj < Xi; aij = 0 otherwise (bij defined similarly). Notice that
aijbij �= 0 only when the relative concordance/discordance relationship is certain
(such as (i) - (iii) in Figure 1). Oakes’ estimator ignores partial information,
provided by censored data, that can be unreliable when τ �= 0 and some data are
censored.

3. New Estimators of τ

3.1. The V-statistic approach

When (T1, T2) are both continuous positive random variables,

τ = 4pr(T1i > T1j , T2i > T2j) − 1 = 4
∫ ∞

0

∫ ∞

0
F (x, y)F (dx, dy) − 1. (3.1)

Therefore one can write τ = T (F ), where T : D[SF ] → IR and D[SF ] is the
space of cadlag functions on SF . When there is no censoring τ can be estimated
by T (ĪF ), where ĪF is the empirical estimator of F . T (ĪF ) has the form of a
so-called V-statistic, which differs from the U-statistic estimator in (2.1) only at
order O(n−3) (Serfling (1980)). Asymptotic properties of T (ĪF ) can be developed
by applying a Taylor series expansion on T (·) (Fernholz (1983)). The technique
was first introduced by von Mises (1947) and then further extended to the so-
called “functional δ method” by Gill (1989). Generally speaking, if the estimator
of F is a reasonable estimator and T (·) is a “differentiable” functional (specifi-
cally, compactly or Hadamard differentiable), T (ĪF ) will inherit nice properties
of ĪF . In our case, it is easy to show that T (F ) = 4

∫
F dF − 1 is compactly

differentiable with F being a cadlag function of bounded variation. Since ĪF is
strongly consistent and asymptotically normal (at a rate n−1/2), nice properties
of T (ĪF ) follow.
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When either T1 or T2 has a discrete component the data may have ties and
(3.1) has to be modified. Notice that by the law of total probability, pr{(T1i −
T1j)(T2i−T2j) > 0} + pr{(T1i−T1j)(T2i−T2j) < 0} + pr{(T1i−T1j)(T2i−T2j) =
0} = 1. Based on the spirit of the unconditional tau, a modified population
version of tau for ties is

τ̃ = 4pr{T1i > T1j , T2i > T2j} − 1 + pr{(T1i − T1j)(T2i − T2j) = 0}. (3.2)

Another alternative, based on the spirit of Γ in (2.2), is

γ =
τ̃

1 − pr{(T1i − T1j)(T2i − T2j) = 0} . (3.3)

Note γ ≥ τ̃ . Since Tki and Tkj (k = 1, 2) are independent and have identical
distributions, it follows that pr(Tki = Tkj) =

∑
s∈Ωk

pr(Tk = s)2, and pr(T1i =
T1j , T2i = T2j) =

∑
s∈Ω1

∑
t∈Ω2

pr(T1 = s, T2 = t), where Ωk (k = 1, 2) are the
sets in which Tk take on their discrete values. With complete data, pr{(T1i −
T1j)(T2i −T2j) = 0} can be easily estimated by empirical estimates. For example
pr(Tk = s) can be estimated by

∑n
i=1 II(Tki = s)/n for s ∈ Ok where Ok is the

set of observed tied points in Tk (k = 1, 2).
As mentioned earlier, a variety of nonparametric estimators of F (x, y) have

been proposed. These bivariate survival estimators can serve as candidates of
the plug-in estimator, denoted ÎF . Let x(0) = y(0) = 0, x(1) < · · · < x(n) and
y(1) < · · · < y(n) be ordered observations of X and Y and δ1:(j) and δ2:(k) be
the corresponding censoring indicators of X(j) and Y(k), respectively. With-
out ties, one can write T (ÎF ) = 4

∑n
i=1

∑n
j=1 ÎF (x(i), y(j))ÎF (�x(i),�y(j)) − 1,

where ÎF is a bivariate survival estimator and ÎF (�x(i),�y(j)) = ÎF (x(i), y(j)) −
ÎF (x(i), y(j−1)) − ÎF (x(i−1), y(j)) + ÎF (x(i−1), y(j−1)) is the estimated mass on the
rectangle [x(i−1), x(i)]× [y(j−1), y(j)]. Thus ÎF (�x(i),�y(j)) is the estimated mass
at (x(i), y(j)) when ÎF is discrete at data points. Note that ÎF (x(i), 0) = ÎF 1(x(i))
and ÎF (0, y(j)) = ÎF 2(y(j)) and that, for most existing estimators of the sur-
vival function, ÎF k(·) reduces to the Kaplan-Meier estimator of Fk(·) (k = 1, 2).
When ties are present, the probability of pr{(T1i − T1j)(T2i − T2j) = 0} can
also be estimated under censoring. Specifically pr(Tk = s) can be estimated
by ÎF k(s−) − ÎF k(s) (k = 1, 2) and pr(T1 = s, T2 = t) can be estimated by
ÎF (∆s,∆t).

To simplify the analysis, we assume T1 and T2 are both continuous. As
in the univariate case where Kaplan-Meier integrals are biased (Stute (1994)),
T (ÎF ) is an asymptotically biased estimator of τ . Specifically, it may happen
that ÎF does not go to zero as x or y goes to ∞ if δ1:(n) = 0 or δ2:(n) = 0 and,
as a result,

∑n
i=1

∑n
j=1 ÎF (�x(i),�y(j)) < 1. Recall SH = {(x, y) : H(x, y) > 0}
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and SF = {(x, y) : F (x, y) > 0}. Under right censoring, SH ⊆ SF . It should be
mentioned that asymptotic properties of the aforementioned bivariate survival
estimators are valid only in SH .

Define τ0 = 4
∫ ∫

SH
F (x, y)F (dx, dy) − 1. Note that β = τ0 − τ measures the

bias of τ0 from τ . It is easy to see that β ≤ 0 with equality when SH = SF . Since
no data can be obtained outside the range of SH , β is not identifiable. It follows
that

T (ÎF ) = 4
∫ ∞

0

∫ ∞

0
ÎF (x, y)ÎF (dx, dy)− 1 = 4

∫ ∫
SH

ÎF (x, y)ÎF (dx, dy)− 1, (3.4)

which implies that T (ÎF ) actually estimates τ0 instead of τ . From now on we let
τ̂0 = T (ÎF ). The asymptotic properties of τ̂0 are stated in the following theorem.

Theorem 1. Suppose (X,Y ) are jointly continuous. If ÎF (x, y) is a strongly
consistent estimator of F (x, y) on SH = {(x, y) : H(x, y) > 0}, and H−1

j (t) (j =
1, 2) are continuous at t = 0 then τ̂0 converges to τ0 (≤ τ) in probability and,
if n1/2{ÎF (x, y)−F (x, y)} converges weakly to a mean-zero Gaussian process for
(x, y) ∈ SH , n1/2(τ̂0 − τ0) converges to a mean-zero normal random variable.

3.2. Estimable bounds on the bias

We study bounds on the bias that can be easily estimated with reasonable
precision. Sharper bounds on τ , such as those on Kaplan-Meier integrals (for a
review, see Stute (1994)), may be derived in a more rigorous fashion. First note
that

|β| ≤ 4 pr(SF \SH) sup
(x,y):SF \SH

|F (x, y)| , (3.5)

where A\B = A∩Bc and Bc is the complement of B. Without loss of generality,
assume SF = [0,∞)2. Precise knowledge on SH is crucial in constructing a bound
on F (x, y) in SF \SH . Generally SH is unknown in the nonparametric setting.
But, given the data, one can obtain some information about it.

Let ξj = sup{t : Hj(t) > 0, 0 ≤ t < ∞} (j = 1, 2) and cl(SH) be the closure
of SH . Partition SF \cl(SH) into four disjoint sets (see Figure 2), C1 ≡ (ξ1,∞)×
[0, ξ2], C2 ≡ [0, ξ1]× (ξ2,∞) C3 ≡ (ξ1,∞)× (ξ2,∞) and IRH ≡ [0,∞)2\{cl(SH ) ∪
C1 ∪ C2 ∪ C3}.

From the decomposition of SF \cl(SH) as C1 ∪ C2 ∪ C3 ∪ IRH , it follows that

F (x, y) ≤

F1(ξ1) if (x, y) ∈ C1

F2(ξ2) if (x, y) ∈ C2

F (ξ1, ξ2) if (x, y) ∈ C3

max(x,y)∈S̃H
F (x, y) if (x, y) ∈ IRH ,

(3.6)
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where S̃H is the boundary of SH . From (3.4) and (3.5),

|β| ≤ 4 {F1(ξ1)pr(C1)+F2(ξ2)pr(C2)+F (ξ1, ξ2)pr(C3)+ max
(x,y)∈S̃H

F (x, y)pr(IRH)}.

(3.7)
C2 C3

ξ2

RH

C1

SH

ξ1

Figure 2. Illustration of the sets in construction of the bounds.

The bound of β in (3.7) can be estimated. Note that the endpoints ξ1 and
ξ2 can be consistently estimated by the maximum order statistics x(n) and y(n),
respectively. The Glivenko-Cantelli Theorem implies the probabilities of the sets,
cl(SH), Ck (k = 1, 2, 3) and IRH can be consistently estimated by p̂r(cl(SH )) =∑n

i=1

∑n
j=1 ÎF (�x(i),�y(j)), p̂r(C1) = ÎF 1(x(n))−ÎF (x(n), y(n)), p̂r(C2) = ÎF 2(y(n))

−ÎF (x(n), y(n)), p̂r(C3) = ÎF (x(n), y(n)), and

p̂r(IRH) = 1 − {
n∑

i=1

n∑
j=1

ÎF (�x(i),�y(j)) + p̂r(C1) + p̂r(C2) + p̂r(C3)},

respectively. Note that max(x,y)∈S̃H
F (x, y) can be estimated by max(i,j)∈ŠH

ÎF (xi, yj), where ŠH = {(xi, yj) : Ĥ(xi, yj) = 0, (i, j = 1, . . . , n)}. Therefore,
based on (3.6), a bound for τ can be estimated by [τ̂0, τ̂1], where

τ̂1 = τ̂0 + 4
{
ÎF 1(x(n))p̂r(C1) + ÎF 1(y(n))p̂r(C2) + ÎF (x(n), y(n))p̂r(C3)

+ max
(i,j)∈ŠH

ÎF (xi, yj)p̂r(IRH)
}
. (3.8)

When δ1:(n) = δ2:(n) = 1 it follows that τ̂0 = τ̂1 since, for most existing esti-
mators of F (x, y), ÎF 1(x(n)) = ÎF 2(y(n)) = 0, ÎF (x, y(n)) = ÎF (x(n), y) = 0 and
hence p̂r(IRH) = 0 . In such cases the bounds shrink to a point estimate of τ . In
general the length of the bound depends on the sample size, the censoring pro-
portion and in particular the magnitude of ÎF 1(x(n)), ÎF 2(y(n)) and ÎF (x(n), y(n)).
Chen and Lo (1997) derived some results on the consistency of the Kaplan-Meier
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estimates ÎF i(t) (i = 1, 2) for t near the endpoint. Specifically they showed that
supt≤ξi

|ÎF i(t) − Fi(t)| = o(n−p) if for 0 < p < 1/2,

∫ ξi

0
(1 − Gi)

− p
1−p dF < ∞ (i = 1, 2), (3.9)

where Gi is the survival function of the censoring variable Ci. The size of p in (3.9)
essentially reflects the heaviness of the censoring in the tail region. The smaller
the p the less the uncensored observations are near the endpoint. This in turn is
reflected in the convergence rate of ÎF i. The consistency of τ̂1 is summarized in
the following proposition.

Proposition 1. Suppose that the assumption in Theorem 1 and (3.9) are satis-
fied. Define hx(y) ≡ H(x, y) for a fixed x and hy(x) ≡ H(x, y) for a fixed y. As-
sume that h−1

y (t) and h−1
x (t) exist for any (x, y) ∈ SH and are continuous at t = 0.

Then τ̂1, defined in (3.8), converges to τ1 = τ0 + 4{F1(ξ1)pr(C1) + F2(ξ2)pr(C2)
+F (ξ1, ξ2)pr(C3) + max(x,y)∈S̃H

F (x, y)pr(IRH)} ≥ τ in probability.

Alternatively for (x, y) ∈ C1∪C2∪C3, it is easy to see that F (x, y) ≤ F1(ξ1)∨
F2(ξ2). If

∫ ∫
(x,y)∈IRH

F (x, y)F (dx, dy) ≤ pr(IRH){F1(ξ1) ∨ F2(ξ2)}, (3.10)

then a simple crude bound on β is given by

|β| ≤ 4 {F1(ξ1) ∨ F2(ξ2)}{1 − Pr(SH)}, (3.11)

and the second bound for τ can be estimated by [τ̂0, τ̂2], where

τ̂2 = τ̂0 + 4
{
ÎF 1(x(n)) ∨ ÎF 2(x(n))

}
{1 − p̂r(SH)} . (3.12)

Again, the length of this bound depends on the sample size and the censoring
proportion. This bound also shrinks to a point estimate of τ when the largest
observations are uncensored. Under (3.9) and (3.10), τ̂2 converges to τ2 in prob-
ability, where τ2 = τ0 + 4{F1(ξ1)∨F2(ξ2)}{1−Pr(SH)} ≥ τ . Note that the con-
dition stated in (3.10) is weaker than the assumption that max(x,y)∈S̃H

F (x, y) ≤
F1(ξ1) ∨ F2(ξ2). Although the marginal endpoints (ξ1, 0) and (0, ξ2) both lie in
S̃H , the latter assumption may not be true since S̃H is not a contour curve of F .
Furthermore both assumptions can not be verified nonparametrically.

In general SH ⊆ [0, ξ1)× [0, ξ2). When SH ≡ [0, ξ1)× [0, ξ2), that is IRH = ∅,
it is easy to see that τ̂1 = τ̂3 ≤ τ̂2 where

τ̂3 = τ̂0 + 4
{
ÎF 1(x(n))p̂r(C1) + ÎF 1(y(n))p̂r(C2) + ÎF (x(n), y(n))p̂r(C3)

}
. (3.13)
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Even in the case when SH is strictly contained in [0, ξ1) × [0, ξ2), the set IRH is
usually much smaller than [0,∞)2\[0, ξ1)× [0, ξ2). Therefore the loose bound on
F (x, y) for points in [0,∞)2\[0, ξ1) × [0, ξ2) leaves some space for (x, y) ∈ IRH .
This implies that [τ̂0, τ̂3], in most cases, still provides a bound on τ and is sharper
than [τ̂0, τ̂j ] (j = 1, 2).

4. Variance Estimation and Bias Correction Using Bootstrap

The limiting variances of τ̂j (j = 0, 1, 2, 3) depend on the asymptotic variance
of ÎF , which in turn depends on the unknown F . However most existing survival
function estimators are too complex to have closed forms for their asymptotic
variances. This leads to the use of the bootstrap. Let {(x∗

j , y
∗
j , δ

∗
1j , δ

∗
2j), (j =

1, . . . ,m)} be a sample of size m from the original censored data with replace-
ment. Based on the bootstrap sample, one can compute ÎF

∗
and then τ̂∗

j (j =
0, 1, 2, 3). It has been shown that as n ∧ m → ∞, m1/2{ÎF ∗

(x, y) − ÎF (x, y)} will
mimic the asymptotic distribution of n1/2{ÎF (x, y)−F (x, y)} on SH (Dabrowska
(1989)). The behavior of m1/2(τ̂∗

j − τ̂j) will also mimic that of n1/2(τ̂j − τj) for
j = 0, 1, 2, 3. The bootstrap resampling procedure can be repeated B times. The
sample variance of τ̂∗

jb (b = 1, . . . , B) can be used to estimate the variance of τ̂j for
j = 0, 1, 2, 3. There are two ways of constructing confidence intervals on τj. The
first method is to apply the normality result and construct “t-type” confidence
intervals using bootstrap variance estimates. Another alternative, which does
not need the limiting normality result, is to use bootstrap percentiles. Refer to
Efron and Tibshirani (1993) for detailed descriptions of both of these methods.

The bootstrap can also be used in bias estimation (Efron and Tibshirani
(1993, §10). Let ÎF

∗
b (b = 1, . . . , B) be bootstrap estimates of F from B bootstrap

samples. It turns out that τ̂∗
0 − τ̂0 can be used to estimate the bias τ̂0− τ0, where

τ̂∗
0 =

∑B
b=1 T (ÎF

∗
b)/B. The improvement by reducing the bias of τ̂0 to τ0 may

still be useful, especially for small sample sizes, where τ̂0 is a biased estimate of
τ0. We investigate the effect of bias correction via examples in the next section.

5. Examples

5.1. Simulation results

A series of Monte Carlo simulations was carried out to examine finite sample
performance of τ̂j (j = 0, 1, 2, 3, B) (defined by (3.4), (3.8), (3.12), (3.13), and
the modification of (2.2) by Brown et al. (1974)), for cases with τ = 0.1, 0.5, 0.8
and n = 100, 200. The replicates of the vector (T1, T2) were generated from
Clayton’s family (1978), whose survival functions are of the form

F (x, y) =
{
[

1
F1(x)

]α−1 + [
1

F2(y)
]α−1 − 1

}−1/(α−1)
(α > 0), (5.1)
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where τ = (α − 1)/(α + 1) and Fi(t) = exp(−t) (i = 1, 2). Censoring vectors
(C1, C2) were generated from independent uniform distributions. The marginal
censoring rate was about 30% in both dimensions, and double censoring varied
from 10% to 15% as τ increased from 0.1 to 0.8. The estimator of τ proposed
by Oakes (1982) was also studied but these results are not included: Oakes’
estimator performed well when τ was near zero but its bias became substantial
when τ got larger.

Table 2. Performance of estimators of τ with n = 200. In each cell the top
number (×10−2) is the average of τ̂j − τ and the number in the parenthesis
(×10−2) is the standard deviation of τ̂j based on 1, 000 replications.

τ = 0.8 τ = 0.5 τ = 0.1
τ̂0 -1.2 -1.2 -1.2

(5.5) (5.1) (5.4)
τ̂1 0.6 0.7 1.2

(5.6) (5.5) (5.7)
τ̂2 0.9 1.0 1.5

(5.4) (5.3) (5.8)
τ̂B -9.7 -5.7 -1.3

(2.2) (4.1) (5.3)

Note that in all simulations, τ̂1 is very close to τ̂3 and only the result on τ̂1

is reported. Tables 2 and 3 list the results for n = 100 and n = 200, respectively,
based on 1, 000 simulation runs. In each cell, the first number (×10−2) is the
average of τ̂j − τ (j = 0, 1, 2, B) and the number in parenthesis (×10−2) is the
standard deviation of τ̂j. As Theorem 1 indicates, τ̂0 − τ ≤ 0 and τ̂j − τ ≥ 0 (j =
1, 2). The length of the two estimated bounds can be obtained by calculating
τ̂j − τ̂0 (j = 1, 2). It is easy to see that the length of the bounds increases as
the value of τ decreases and the sample size increases. On the average [τ̂0, τ̂1]
is shorter than [τ̂0, τ̂2]. Notice that τ̂B performs well at τ = 0.1 but it becomes
more biased as the value of τ increases. The proposed bounds provide much more
accurate information on τ for moderate and high correlation in both sample sizes.

We also studied the effect of using the bootstrap method to correct the bias
of τ̂0. Let

τ̂bc = τ̂0 − {
B∑

b=1

[T (ÎF
∗
b)/B − τ̂0]}

be the bias-corrected estimate of τ0. We hope that τ̂bc is closer to τ than τ̂0

is. We studied three cases τ = 0.1, 0.5, 0.8 with n = 100, m = 100 and B =
200. Because of the extensive computing time, we ran only 200 replications.
The average of τ̂bc − τ (×10−2) is −1.0, −0.2 and −0.8 for τ = 0.8, 0.5, 0.1,
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respectively. The standard deviation of τ̂bc (×10−2) is 7.2, 7.9 and 8.8 for τ =
0.8, 0.5, 0.1, respectively. Compared with the results in Table 1 and 2 we see that
τ̂bc, calculated from an original sample with n = 100, is even less biased than τ̂0

with n = 200 and various degrees of association. However τ̂bc tends to have larger
variation. It seems worthwhile to use the bootstrap to correct bias for τ = 0.5
and 0.8.

5.2. Illustrative examples

Two data sets were analyzed, with Dabrowska’s estimator used as the plug-
in estimator of F . The first data set was from a study on the length of exercise
time required to induce angina pectoris in 21 heart disease patients (Danahy,
Burwell, Aranow and Prakash (1977)). Here T1 is the exercise time to angina
pectoris at time 0 and T2 is the exercise time to angina pectoris 3 hours after
taking oral isosorbide dinitrate. Only 4 observations of T2 were censored due to
patient fatigue. Since the largest observations of T1 and T2 are both observed,
the proposed approach also yields a point estimate. Two observations of T1 are
tied with O1 = {250} and the estimated probability of pr(T1 = 250) is (2/21)2.
After adjusting for ties, the proposed estimate of τ̃ is 0.384 + 0.009 = 0.393
and the estimate of γ, in (3.3), is 0.397. The proposed bootstrap bias-corrected
estimate of τ̃ is 0.399 and that of γ is 0.40. However τ̂B = 0.48, which is very
different from the proposed estimates. Without knowing the true value of τ , it
seems impossible to compare the two estimates. Nevertheless, the model selection
procedure proposed by Genest and Rivest (1993) allows one to informally evaluate
relative accuracy of the estimates. Specifically, suppose that (T1, T2) belongs to
the Archimedean copula class whose survival function is of the form

F (x, y) = φ−1
α {φα(F1(x)) + φα(F2(y))}, (5.2)

for some convex decreasing function φα(·) satisfying φα(1) = 0, α an association
parameter. They showed that

τ = 4
∫ 1

0
λα(v)dv + 1, (5.3)

where λα(v) = v − pr(Fα(T1, T2) ≤ v) and φα(v) = exp{
∫ v
v0

1/λα(t)dt}, where
0 < v0 < 1 is an arbitrary constant. Wang and Wells (1997) proposed a nonpara-
metric estimator of λ(v) for bivariate censored data. We found that theoretical
curves of λα̂(v) for some selected models with α̂ inverted using τ̂ = 0.393 are
much closer to the nonparametric estimate of λ(v) than those with α̂ inverted
using τ̂ = 0.484. This suggests that the proposed estimate of τ is more accurate
than τ̂B.
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The second data set (McGilchrist and Aisbett (1991)) is from a study of the
recurrence time of infection in kidney patients who are using a portable dialysis
machine. Two successive recurrence times, measured from insertion until the next
infection, were recorded. The catheter must be removed if an infection occurs.
After infection cleared up, the catheter was then reinserted. Censoring may be
due to removal for other reasons or the end-of-study effect (for the second infec-
tion). Let T1 be the time to the first infection and T2 be the time to the second.
There are 38 observations, 6 observations of T1 were censored, 12 observations
of T2 were censored, and 3 observations were doubly censored. Since the largest
observations of X and Y are both observed, the proposed method also produces a
point estimate. Observations of X with δ1 = 1 and Y with δ2 = 1 both have ties,
specifically O1 = {7, 15, 152} and O2 = {30}. Using the proposed method, the
estimated pr(T1i = T1j or T2i = T2j) is 0.022, the estimate of τ̃ is 0.213 and that
for γ, in (3.3), is 0.213/0.978 = 0.218. The bootstrap bias-corrected estimates of
τ̃ and γ are almost identical to the uncorrected version. The estimated standard
deviation of the proposed estimate is 0.072. The estimate by Brown et al. is
τ̂B = 0.209, quite close to the proposed estimate of γ. Notice that in this data
set 3 observations (out of 38) are doubly censored but τ is low. That is why the
proposed estimator does not show much improvement.

6. Discussion

Although Kendall’s tau is an important quantity of interest in many applica-
tions, until now there has not been a practical estimator of τ under censored data.
Previous estimators fail to account for joint information and are not reliable if the
degree of association is above a moderate level. The proposed method imposes
estimable bounds on τ which can produce a consistent estimator if the largest
observations in both dimensions are uncensored. The lengths of the bounds de-
pend heavily on the estimated tail probabilities of F and Fj (j = 1, 2). Then
if some proportion of large observations are censored, the bounds can be very
wide and contain very little information about τ . This is the main drawback of
the proposed approach. It should be mentioned that we encountered negative
mass when using the Dabrowska estimator. The negative mass problem has been
pointed out by Pruitt (1991) and is actually common to most bivariate estima-
tors mentioned earlier, except for the so called “repaired nonparametric MLE”
proposed by van der Laan (1996). We think that negative mass is not serious
in estimating τ . Specifically we observe that

∫ x
0

∫ y
0 ÎF (du, dv) is a good estimate

of F (x, y) even when some ÎF (du, dv) are negative. It seems that statistics of
the form

∫ ∫
φ(u, v)ÎF (du, dv) can still be good estimates of

∫ ∫
φ(u, v)F (du, dv),

since the effect of negative mass can be averaged out. However negative mass
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may cause problems in computing the probability of tied observations. In such a
case improvement is possible if a proper survival function estimate of F is used.
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Appendix

Proof of Theorem 1
Proof of Consistency. One has

1/4{τ̂0−τ0} =
∫ ∫

SH

ÎF (x, y)ÎF (dx, dy)−
∫ ∫

SH

F (x, y)F (dx, dy)

=
∫ ∫

SH

{ÎF (x, y)−F (x, y)}ÎF (dx, dy) +
∫ ∫

SH

F (x, y){ÎF (dx, dy)−F (dx, dy)}.

By strong consistency of ÎF on SH , and applying the Bounded Convergence Theo-
rem, the first term in the above equation converges to zero. To prove convergence
of the second term (to zero) when SH is a rectangle, one can apply integration
by parts successively to make functions of {ÎF (x, y) − F (x, y)} appear in the in-
tegrand and then use the previous arguments. When SH is not a rectangle, one
can approximate it by a union of small rectangles so that the integration by parts
formula can be applied. The approximation will approach the target region SH

as the mesh of rectangle grids becomes increasingly finer. Then τ̂0
P→τ0 as n → ∞

can be proved.

Proof of Normality. Let Ŵ (x, y) = n1/2{ÎF (x, y)−F (x, y)}, weakly convergent
to a zero mean Gaussian process on SH . Denote the limiting process of Ŵ (x, y)
by W (x, y). It can be shown that

n1/2{τ̂0 − τ0} =
∫ ∫

SH

Ŵ (x, y)F (dx, dy) +
∫ ∫

SH

F (x, y)Ŵ (dx, dy)

+
∫ ∫

SH

Ŵ (x, y){ÎF (dx, dy) − F (dx, dy)}.

Weak convergence of Ŵ (x, y) to W (x, y) on SH implies that
∫ ∫

SH

Ŵ (x, y)F (dx, dy) ⇒
∫ ∫

SH

W (x, y)F (dx, dy)

and ∫ ∫
SH

F (x, y)Ŵ (dx, dy) ⇒
∫ ∫

SH

F (x, y)W (dx, dy).
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Now the remaining work is to show that
∣∣∣∫ ∫

SH
Ŵ (x, y){ÎF (dx, dy) − F (dx, dy)}

∣∣∣
→ 0. Without loss of generality, let SH = [0, ξ1)× [0, ξ2). If SH is not a rectangle
we can apply the argument in the previous proof. Let V (x, y) = {ÎF (x, y) −
F (x, y)} and by successive integration by parts, we can obtain the following
expression:
∫ ξ1

0

∫ ξ2

0
n1/2V (x, y)V (dx, dy)=

∫ ξ1

0
n1/2V (x, ξ2)V (dx, ξ2)−

∫ ξ1

0
n1/2V (x, 0)V (dx, 0)

+
∫ ξ2

0
n1/2V (ξ1, y)V (ξ1, dy)−

∫ ξ2

0
n1/2V (0, y)V (0, dy)−

∫ ξ1

0

∫ ξ2

0
n1/2V (x, y)V (dx, dy).

Notice that by one more integration by parts in the first term of the above,
∫ ξ1

0
n1/2V (x, ξ2)V (dx, ξ2)=n1/2{V (ξ1, ξ2)2−V (0, ξ2)2}−

∫ ξ1

0
n1/2V (x, ξ2)V (dx, ξ2).

Since n1/2V (ξ1, ξ2)2 → 0 and n1/2V (0, ξ2)2 → 0, it follows that
∫ ξ1
0 n1/2V (x, ξ2)

V (dx, ξ2) → 0. Using similar techniques, one can show that the second to the
fourth terms in (A.1) converge to zero, and consequently

∫ ξ1
0

∫ ξ2
0 n1/2V (x, y)

V (dx, dy) → 0. This completes the proof.

Proof of Proposition 1. It is easy to see that τ1 ≥ τ . One can write
x(n) = Ĥ−1

1 (0) and y(n) = Ĥ−1
2 (0), where Ĥj (j = 1, 2) are the empirical survival

functions of X and Y , respectively. By the elementary Glivenko-Cantelli theorem
and continuity of H−1

j (t) (j = 1, 2) at t = 0, it follows that limn→∞ Ĥ−1
j (0) =

H−1
j (0) = ξj (j = 1, 2). Then under (3.9), the strong consistency of the Kaplan-

Meier estimator follows from Theorem 1 of Chen and Lo (1997). With the
continuity of Fj , ÎF 1(x(n)) → F1(ξ1), ÎF 2(y(n)) → F2(ξ1) and ÎF 1(x(n), y(n)) →
F (ξ1, ξ2). By the continuity of F (·, ·), F (x, y) → F (x∗, y∗) if (x∗, y∗) → (x, y).
With the continuity of h−1

x (t) and h−1
y (t) at t = 0, one can show that consis-

tency of ÎF on SH can be extended to S̃H . Since Ĥ(·, ·) converges to H(·, ·),
it follows that max(i,j)∈ŠH

ÎF (xi, yj) converges to max(x,y)∈S̃H
F (x, y). Because

p̂r(Ck), p̂r(SH) and p̂r(IRH) are consistent estimates of pr(Ck) for k = 1, 2, 3,
pr(SH) and pr(IRH), respectively, τ̂1

P→τ1 can be established under the assumed
conditions.
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