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Model Selection and Semiparametric Inference for 
Bivariate Failure-Time Data 

Weijing WANG and Martin T. WELLS 

We propose model selection procedures for bivariate survival models for censored data generated by the Archimedean copula 
family. In route to constructing the selection methodology, we develop estimates of some time-dependent association measures, 
including estimates of the local and global Kendall’s tau, local odds ratio, and other measures defined throughout the literature. 
We propose a goodness-of-fit-based model selection methodology as well as a graphical approach. We show that the proposed 
methods have desirable asymptotic properties and perform well in finite samples. 

KEY WORDS: Archimedean copula; Bivariate survival function; Frailty distribution; Kendall’s tau; Model selection; Odds ratio 
estimation; Time-dependent association. 

1. INTRODUCTION 

In recent years substantial research effort has been de- 
voted to developing methodology for multivariate failure- 
time data. Applications of multivariate survival analysis 
arise in various fields. Examples in biomedical applications 
include lifetime analysis in match-paired case control stud- 
ies, studies of time to occurrence of a disease to paired 
organs, and the examination of duration times of critical 
stages of a multistage disease process. Specifically, in Sec- 
tion 4 we consider an assessment of the effect of a medical 
intervention on angina pectoris. Danahy, Burwell, Aranow, 
and Prakash (1977) collected data on 21 cardiac disease pec- 
toris and recorded exercise time until angina pectoris and 
the exercise time until angina pectoris 3 hours after tak- 
ing oral isosorbide dinitrate. One needs to account for the 
censoring induced by patient fatigue. It is clearly important 
to assess the bivariate relationship between the control and 
treatment times while accounting for within-subject depen- 
dence, and a marginal analysis would not yield the impor- 
tant treatment effect information. As for other applications, 
in demographic studies of the dynamics of mortality, mul- 
tivariate models incorporate an exchangeable dependence 
structure by the inclusion of a cluster-specific random ef- 
fect (see Vaupel, Manton, and Stallard 1979). In engineer- 
ing applications, modeling the multivariate nature of me- 
chanical or electronic components in a parallel or a serial 
system has become increasingly important (see Marshall 
and Olkin 1988). The canonical problem of interest is to 
study the dependence relationship among several lifetime 
random variables. In many applications, it is often believed 
that the level of association varies across time, and it is of 
particular interest to investigate the time-dependent asso- 
ciation. In this article we focus on the bivariate case, al- 
though many of the ideas could be extended to multivariate 
problems. 

Weijing Wang is Associate Professor, Institute of Statistics, National 
Chiao-Tung University, Hsin-chu, Taiwan (E-mail: wjwung@stut.nctu. 
edu.hv). Martin T. Wells is Associate Professor, Department of Social 
Statistics, Cornell University, Ithaca, NY 14851. The support of The Na- 
tional Science Council (grant 87-21 18) and National Science Foundation 
(grants DMS 9625440 and 9971586) is gratefully acknowledged, as are 
the kind and helpful comments of the editor, associate editor, and refer- 
ees. The authors thank Phillip Hougaard for providing the references for 
the datasets. 

Let ( X , Y )  be the lifetime variables of interest with 
joint survival function F ( z , y )  = Pr(X > z ,Y > y) 
and marginal survival functions Fi(.) (i = 1,2) .  If the 
components of ( X , Y )  are locally independent at a point 
(2, y), then F ( z ,  y) = Fl(z)F2(y). Hence the most simplis- 
tic method of assessing local dependence is by checking 
whether F ( z ,  y)/{Fl(z)F~(y)} = 1. There exist many other 
time-dependent association measures constructed for differ- 
ent purposes of analysis; these include the local odds ratio 
function, the local Kendall’s tau function (Oakes 1989), and 
the covariance function of the marginal martingale com- 
ponents (Prentice and Cai 1992). Anderson, Louis, Holm, 
and Harvald (1992) have given a nice general discussion on 
these measures. 

A more modern approach to investigating local depen- 
dence is through model fitting. Although more assumptions 
may be required, modeling provides a systematic way to 
summarize joint relationships. The past decade has seen 
a substantial research effort toward deriving a unified ap- 
proach to studying models that are generated by a system of 
random effects. For example, Hougaard (1986) and Oakes 
(1989) discussed a family of correlated bivariate distribu- 
tions induced by a latent frailty variable. Lindeboom and 
Van Den Berg (1994) and Marshall and Olkin (1988) stud- 
ied a class of distributions generated by bivariate mixtures. 
Applications of frailty models were discussed by Bandeen- 
Roche and Liang (1996), Clayton and Cuzick (1985), Mur- 
phy (1994), Nielsen, Gill, Andersen, and Sorenson (1992), 
and Vaupel et al. (1979). Genest and MacKay (1986), Genest 
and Rivest (1993), and Joe (1993) studied the mathemati- 
cal properties of the copula and Archimedean copula (AC) 
classes. The copula class separates the dependence struc- 
ture from the marginal effects. Following development of 
the general modeling techniques, there has been growing 
research interest in developing methodology for selecting 
a particular model from a given class. For instance, Oakes 
(1989) used the local odds ratio function to identify the un- 
derlying frailty distribution. Genest and Rivest (1993) de- 
rived a measure based on a decomposition of Kendall’s tau 
statistic to identify a particular AC model. However, in the 
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important case where censoring is present, there have been 
no results to date. 

Censoring is common in the analysis of lifetime data. 
In bivariate survival analysis ( X , Y )  may both be subject 
to censoring, this complicates the construction of statisti- 
cal inference procedures. Specifically, let (Cl, C2) be the 
nuisance censoring variables. With right-censored data, one 
observes (X, p) = ( X  A C1, Y A C2) and a pair of in- 
dicators, (d1,d2) = { l ( X  5 Cl), l ( Y  5 Cz)} ,  where 
a A b = min(a, b)  and I(.) is the indicator function. Re- 
cently, tremendous effort has been spent on the derivation 
of nonparametric estimators of F (z ,y )  for bivariate cen- 
sored data. Estimators of F ( z ,  y) have been proposed by 
Campbell and Foldes (1982), Dabrowska (1988), Lin and 
Ying (19931, Prentice and Cai (1992), Tsai et al. (1986), 
van der Laan (1996), and Wang and Wells (1997), to name 
just a few. In this article we show how previous results can 
be used to derive inferential methods for parameter esti- 
mation and model selection. The proposed methods, which 
utilize the von Mises functional technique of Gill (1989), 
provide a unified inferential approach for estimating quan- 
tities that can be expressed as statistical functionals of F .  
Because the censoring issue is handled in the stage of es- 
timating F ,  the proposed approach is sufficiently flexible 
to deal with various censoring mechanisms. Extra informa- 
tion about the marginal distributions or covariates can eas- 
ily be incorporated into the analysis through the estimation 
of F .  

In Section 2 we develop the theory for a new goodness- 
of-fit procedure and propose a graphical method to select a 
particular AC model for bivariate censored data. In Section 
3 we derive an estimator of the local odds ratio function for 
models in the AC class. We present two real data analyses 
and simulation results on model selection in Section 4, and 
give some concluding remarks and point out some direction 
for further study in Section 5. We provide the proofs of the 
results in an Appendix. 

2. MODEL SELECTION METHODS 

2.1 Definitions 

Many well-known bivariate lifetime distributions with 
continuous marginals, such as those proposed by Clayton 
(1978), Frank (1979), Gumbel (1960, 19611, and Hougaard 
(1986), are of the form 

where F( . , . )  denotes the joint survival function of 
( X , Y ) , F i ( . )  (i = 1,2)  are the marginal survival func- 
tions of X and Y ,  and a 6 IRk denotes an unknown asso- 
ciation parameter. Note that the copula function, Ca(., .), 
is itself a survival function on [0, 112. A special fea- 
ture of the copula class is that the dependence struc- 
ture is separated from the marginal effects, so the depen- 
dence relationship can be studied without specifying the 
marginal distributions. The parameter a can be viewed as 
a global association parameter related to Kendall’s tau, 

specifically 

r l  r l  

Given the same level of overall association measured by a 
or 7, C,(s, t )  determines the degree of local dependence at 
(s, t )  E [0, 112, where ( s ,  t )  indicates the joint survival status. 
Note that all of the models reduce to the same form when 
the overall association approaches to the extreme levels, 
under independence (T = 0), C(s ,  t )  = st and under positive 
maximal dependence (7 = l),C(s,t) = s A t ,  the upper 
FrCchet bound (see Marshall and Olkin 1988). 

Recent research has focused on a subclass of (l), the AC 
class, which indexes Ca(., .) by a univariate function and 
thus has more tractable analytical properties. The survival 
functions in the AC class are of the form 

F(z,y)  = 4,”4a{F&)} + &Y{~z(Y)I l ,  (2) 

where &(.) is a convex function defined on [O, 11 satisfy- 
ing &(l) = 0. This class also contains many useful mod- 
els, including the bivariate frailty family when 4;’ (.) is 
the Laplace transform of the underlying frailty distribution 
(Oakes 1989). Genest and Rivest (1993) showed that the 
function 4, (.) in (2) can be recovered by the estimable uni- 
variate function K ( v )  = P r { F ( X , Y )  5 v}. Specifically, 
K ( v )  is related to &(.) through the differential equation 

(3) 

where lab, (v) = a$~,(w)/av. The foregoing expression yields 
the inversion formula 

where 0 < vo < 1 is an arbitrary constant. Thus X(v), 
or, equivalently X(v), plays a key role in the identification 
of &(.), which in turn determines the underlying depen- 
dence structure for the AC class. The function K ( v )  has a 
general geometric interpretation related to contour analysis. 
Define the contour curve of F (. , .) at level v for E [O, 11 by 
$(v) = {(z ,y )  : F ( z , y )  = v, (x,y) E IR”,. Because F( . , . )  
is monotone, K ( v )  measures the mass between the contour 
curves $(O) and +(w). Equation (4) implies that members 
in the AC class are classified according to the distribution 
of the mass within the contour curves. 

2.2 Estimation of K(v) Under Bivariate Censoring 

When the data are complete, Genest and Rivest (1993) 
proposed estimating K(v)  by constructing “pseudo obser- 
vations” of V,  = F ( X i , Y , )  by c = C,”=, l ( z j  > Xi,yj > 
K ) / ( n  - 1) (i = 1, .  . . , n) and then estimating K ( v )  by 
the empirical distribution function of the fi (i = 1, . . . , n). 
Specifically, Genest and Rivest’s estimate of K ( v )  is given 
by K(v) = CrZl ll(k 5 w)/n. This approach is not vi- 
able if some of {(Xi, K ) ,  i = 1, . . . , n} cannot be directly 
observed due to censoring. Here we propose an estimator 
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of K ( v )  for bivariate censored data, {(Xi, g, 61i, &), i = 
1, . . . , n}. Consider the following expressions of K ( v ) :  

K ( v )  = E [ l { F ( X , Y )  i .}I 

= 6" im I [ F ( z ,  y) 5 v]F(dz, dy ) ,  ( 5 )  

which can be estimated nonparametrically by plugging in an 
estimator of F in the foregoing integral form. Specifically, 
let 2(1) 5 . . .  5 iE(,)-and ij(l) 5 . . .  5 ij(,) be ordered 
observations of {(Xi, K),  i = 1, . . . , n}. The first proposed 
estimator of K ( v )  is given by 

k ( v )  = / 1 n[F(z, Y) 5 v ] ~ ; ( d z ,  dy) 

n n  
= y; wqZ),ij(j)) i v P ( A q i ) ,  AI7,j)L (6) 

q j ) )  = F@(i),ij(j)) - F@(i-l),ij(j)) - F(qi) , i j ( j - l ) )  + 

i=l j=1 

where F is a nonparametric estimator of F and F(A2(i) ,  

F(ii+-l), ij(j-1)) is the estimated mass at ( 2 ( i ) ,  i j ( j ) ) .  
When there is no censoring, F(xi ,yi)  = C;=, I (z j  > 
xi, yj > yi)/n, (i = 1,.  . . ,n) ,  is the empirical survival 
estimate at ( z i , y i ) , F ( ~ z i , ~ y i )  = l /n  (i = 1,. . . ,n)  
and F(Az:,,Ayj) = 0 if i # j. It is easy to see that 

Pr(F(X ,  Y )  = v), which equals 0 under (2) and the assumed 
continuity (Genest and MacKay 1986). Hence K and j? are 
asymptotically equivalent in the case of no censoring. 

The nonparametric estimators of F mentioned previously 
were all derived under the assumption that ( X ,  Y )  are in- 
dependent of (Cl , C2). Sometimes the independent censor- 
ing assumption is not plausible. Lin, Sun, and Ying (1999), 
Visser (1996), and Wang and Wells (1998) discussed a de- 
pendent censoring situation when ( X , Y )  are the duration 
times for successive events and proposed nonparametric es- 
timators to adjust for dependent censoring. Note that be- 
cause the issue of censoring is handled in the stage of esti- 
mating F ,  the proposed idea for estimating K( . )  is flexible 
under various censoring structures as long as an appropriate 
estimator of F is used. 

Properties of k ( v )  depend on properties of the under- 
lying estimator F. Denote the support of ( X , Y )  by 7 = 
{(z,y) : Pr(X > z,Y > y) > 0}, and let V be the im- 
age of 7 under F.  Under right censoring, 7 is contained in 
the support of ( X , Y ) .  Asymptotic results for most non- 
parametric estimators of F are valid only for points in 
7, the restricted support. Because F ( z ,  y) cannot capture 
the mass outside 7, K ( v )  must be modified. The modified 
estimator of K ( v )  is based on the equivalent expression, 
K ( v )  = 1 - P r ( F ( X ,  Y )  > v), and is given by 

j?(v) - I ? ( ~ )  = i / n ~ ; = ~  n[v < E I (n/n - + p  

n n  

The following theorem shows that if the underlying esti- 
mator of F is consistent and converges weakly to a Gauss- 

ian process on D[q, then k ( v )  will inherit some nice 
properties on D[V].  The weak convergence (*) result for 
f i { k ( v )  - K ( v ) }  has been established by Barbe, Genest, 
Choudi, and RCmillard (1  996) for complete data. To deduce 
the weak convergence result for f i { k ( v )  - K ( v ) }  we need 
the following hypotheses: 
H1. The distribution function K ( v )  of V = F ( X ,  Y )  admits 
a continuous density k(v): 
H2. Given F ( z , y )  = v, there exists a version of the con- 
ditional distribution of ( X ,  Y )  and a countable family P of 
partition C on 7 into a finite number of Bore1 sets satisfying 
infcEpmaxcEc diam(C) = 0, such that for all C E C, the 
mapping v + p,(C) = k(v) Pr{ (X ,  Y )  E C I F ( X ,  Y )  = v}, 
is continuous. 

Theorem 1. If F(z, y) is a uniformly and strongly con- 
sistent estimator of F ( z , y )  for ( q y )  E 7, then for 0 < 
E = F ( T ~ , T ~ )  I Y 5 1 with ( 7 1 , ~ ~ )  E 7 , k ( v )  3 K ( v )  on 
[ E ,  11. Furthermore, if ~ ~ ~ / ~ { @ ( z , y )  - F(z ,y)}  + W(z,y) ,  
where W(z, y) is a continuous mean-zero Gaussian process 
on D[V, then under H1 and H2, it follows that on Do[[, 11, 

T L ' / ~ { ~ ( v )  - K ( u ) }  + X ( W )  = - n(F(z ,y )  > V )  ss 
The weak convergence of various estimators of F was 
demonstrated by Gill, van der Laan, and Wellner (1993) 
using functional delta-method theorems to establish func- 
tional central limit theorems. (For an extensive weak con- 
vergence theory, see Gill 1989 and van der Vaart and Well- 
ner 1993.) 

The asymptotic variance of k ( v )  depends on the asymp- 
totic variance of F. However, in general it is too com- 
plex to give a closed-form expression of the asymptotic 
variance for most estimators of F .  Therefore, the boot- 
strap method becomes a practical alternative for obtaining 
the variance estimate (Dabrowska 1989). Specifically, let 
{ (X;, y;*, 6:j, 6&), j = 1, . . . , m} be a random sample with 
replacement from the original data { ( X i ,  g ,  61i, 62i) ,  i = 
1,. . . , n}  and let F*(z, y) and K*(v)  be the bootstrapped 
counterparts of F ( z ,  y) and k ( v ) .  Using a functional delta- 
method theorem of Gill (1989), it can be shown that as 
mAn -+ co, the bootstrap process n ~ l / ~ { F * ( z ,  y)->F(z, y)} 
converges to the same limiting process as n1/2{F(z,y) - 
F ( z ,  y)}. A similar argument may be applied to show that 
the bootstrap version, m'/'{k*(v) - l?(v)}, also converges 
to the same limit of ~ ~ l / ~ { k ( v )  - K ( v ) } .  

Once an estimator of K ( v )  is obtained, 4( . )  can be esti- 
mated nonparametrically by using the inversion formula in 
(4); that is, 

Because k ( v )  is a step function, to evaluate (8), one must 
smooth k ( v )  and then perform numerical integration. How- 
ever, in general $(v) does not have a tractable form. For 
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inferential purposes, it is more appealing to select a para- 
metric family of &(.) that best describes the data. The 
following section introduces a goodness-of-fit statistic for 
testing whether the data are drawn from a hypothesized 
model. 

2.3 Goodness-of-Fit Statistics 

A number of metrics could be used as goodness-of-fit 
statistics to measure the discrepancy between a hypothe- 
sized model and the empirical model. A natural choice is 
the L2-norm distance, 

S(a )  = {K(v) - K,(v)}2 dv. .6' (9) 

Note that to evaluate K,  (.) for the hypothesized model, one 
usually needs to estimate a. A preliminary estimator of a 
may be obtained via an estimator of Kendall's tau based on 
the relationship 

T = 4 E [ F ( X ,  Y ) ]  - 1 = 4 X,(v) dv + 1 = A(a) .  (10) I' 
If A(a)  = T is a one-to-one function, then a can be esti- 
mated by iu = A-l(.i), where .i is an estimate of T .  If T 

is not a one-to-one function of a, then some artificial con- 
straints may be imposed. For example, the log-copula model 
is indexed by two parameters, a and y (see Table l), and for 
convenience, one may assume that ayy = 1. Nonparametric 
estimation of Kendall's tau under censoring is a complex 
problem. It turns out the estimators proposed by Brown, 
Hollander, and Korwar (1974) and Oakes (1982) are not 
consistent if T # 0. Wang and Wells (1999) showed that if 
the largest observations, Z ( n )  and &n), are both uncensored, 
then 

n n  

is a consistent estimate of T .  However, in general .io + 
4JJ ,F( z , y )F(dz ,dy )  - 1 5 T .  Alternatively, a can be 
estimated by using a minimum distance-type estimate ti = 
argmin, J{l?(v) - K,(v)}' dv. Similar types of minimum 
Cramer-von Mises estimates were discussed by Shorack 
and Wellner (1984, p. 254). The following theorem sum- 
marizes the asymptotic properties of d. 

If K,(v) is twice differentiable with re- 
spect to a with bounded derivatives and f i { l ? ( u p -  
K,(v)} + X ( v ) ,  where X ( v )  is defined in Theorem 1, then 
r ~ ' / ~ ( t i  - a)  converges in distribution to [J{ [ d K , ( ~ ) ] / d a } ~  

The proof of Theorem 2 is given in the Appendix. Note 
that due to the complexity of X ( v ) ,  it is also difficult to 
derive a closed-form expression of the asymptotic variance 
of d. The bootstrap method discussed earlier can be used to 
obtain the variance estimate. Other semiparametric estima- 
tors of a for copula models have been proposed by Genest, 
Ghoudi, and Rivest (1995), Hsu and Prentice (1996) and 

Theorem 2. 

dv]-1 J ( d K , ( v ) / d a ) X ( v )  dv. 

Shih and Louis (1995). These estimators have the desirable 
properties, and the variance of their estimators can be esti- 
mated analytically. 

The following two results supply the needed asymptotic 
theory for construction of the formal test procedure. The 
first is a simple consequence of the continuous mapping 
theorem (Shorack and Wellner 1986, chap. 5 )  for integrals 
of squared Gaussian processes. 

~roposition I. If fi{R(v) - K,(v)} + ~ ( v )  on 
D[<, 11, then nS(a)  + Jl X z ( v )  dv. 

With a estimated by 15, the ideas from the area of 
goodness-of-fit testing for a composite hypothesis may be 
applied (see Shorack and Wellner 1996, chap. 5). 

Theorem 3. If K,(.) is twice differentiable with re- 
spect to a with bounded derivatives and &(& - a )  + &, 
where iu is an estimate of a, then f i { k ( v )  - KG(v)} + 
X ( v )  3 X ( v )  - {[dK,(v)]/da}&. Furthermore, nS(&) + 

The asymptotic variance of S(8 ) ,  denoted by u& is also 
difficult to estimate analytically. However, the naive boot- 
strap approach discussed earlier by resampling bootstrap 
replicates from the original sample, {(Xi, g, bli, bzi), i = 
1, . . . , n} ,  is not valid for obtaining a reasonable estimate 
of 0:. We give a heuristic explanation in the next section. 
Romano (1988) discussed the validity of using the boot- 
strap to approximate the asymptotic distribution of some 
general distance statistics. According to the general theory, 
in our case one generates a bootstrap sample, { V;, . . . , V:}, 
from the distribution V N K&(v).  Using the fact that 
T = 4E(V) - 1, where V = F ( X , Y ) ,  with the boot- 
strap sample one can compute Ez*(v) = c:=~ qv,. < 
w)/n,?* = 4CZ"_, v/n - l ,&* = A-'(.i*),K&*(v), and 
then S*(iu*) = Jt{l?*(v) - K G . ( ~ ) } ~ .  By repeating the 
bootstrap procedure many times, one can estimate r~: by 
the sample variance of bootstrap estimates of S*(&*). Note 
that it does not matter whether originally & is obtained by 
inverting an estimate 7 or not, because the difference of 
nS(&) by using different consistent estimates of a is of 
smaller order and hence negligible. 

J; X y v )  dv. 

2.4 A Graphical Model Selection Method 

Practitioners often need to select the best-fitting model 
among some competing model alternatives for the data 
at hand. Genest and Rivest (1 993) proposed a graphical 
model selection procedure by plotting empirical estimates 
of X(v) = v - K ( v )  with theoretical curves of X,(v) for 
models under consideration. The best-fitting model is the 
one whose theoretical curve is closest to the empirical es- 
timates. The function X(v) can be estimated by x(v) = 
v - l?(v). Plotting x(v)  instead of R(v) gives a better 
visual comparison between x(v) and X(v) than the differ- 
ence between l?(v) and K(v) .  Note that because I k (v )  - 
K&(v)l = Ix(v) - &(v)I ,K(v)  and X(v) yield the same in- 
formation measures. 

The relative magnitude of the test statistic, S(iu), under 
different model assumptions can be used to rank the model 
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proposals. We need not include a model complexity penalty 
if the models under consideration all have roughly the same 
number of parameters. Note that because (Y is estimated, 
ng depends on the form of K,(v) and thus is different for 
different model hypotheses. It is not clear whether the stan- 
dardized statistic T(&)  = S(S)/as, which accounts for the 
variation of S(&),  is a better measure for model selection 
than S ( 6 ) .  We find that the value of US is much smaller 
under the true model. To simplify the discussion, suppose 
that parameters of the model alternatives all have one-to- 
one correspondence with Kendall's tau. Denote K," (.) as the 
distribution function of F ( X ,  Y )  under the true model with 
the true 7 and KT(.)  as the function for any hypothesized 
model with the true level of 7. It follows that 

nS(+) = n{K(?J) - K,"(w)}2dw s 
+ n{K,"(w) - K,(v)}2 dv 

+ 2 n { K ( u )  - K,"(v)}{KT(v) - K?(v)} du s 
s + 2 n{KT(u) - K?(w)}{K,"(w) - K T ( v ) }  dv 

+ 2 / n{K(v )  - K,"(u)}{K,"(v) - KT(v)} dv. 

When the hypothesized model is the true one, Kz(.)  = 
K,(.) and nS(&) + J X 2 ( w )  dv, as stated in Theorem 3. 
However, if the hypothesized model is misspecified (i.e., 
KE(w) - K,(v) = c(w) # 0, where c(v) is a constant vary- 
ing with v), then &(+) will diverge as n + m and pro- 
duce large variation in finite samples. Because T(&)  would 
impose an unnecessary penalty on the correct model, we 
suggest ranking the models based on S(&) and not on its 
standardized version. 

The foregoing decomposition of nS(.i) can also be used 
to illustrate why the naive bootstrap procedure is not valid 
for estimating the asymptotic variance of nS(&). Although 
the naive bootstrap procedure provides a good approxima- 
tion of n1I2{(K(v) - K,"(w)} and n'/2{KT(w) - K;(w)}, it 
cannot mimic the behavior of n1/2{K,0(v)-K,(w)}. In sim- 
ulations, not presented here, we found that the variance 
estimate using the naive bootstrap method is much larger 
than its theoretical value, especially when the hypothesized 
model is the true model. 

Table 1. Examples of Ba (v) 

Range of 
Family 4.2 (v) a and y ea (v) 

~ 

Clayton (v-a- l ) /a  (0, O3) a+ 1 
I - e x  ( -a)  V a  

log ( 1 - e x : - a v ) )  (-03, ~) l - e x p ( - a v )  Frank 

Log-copula {I - log (~)/ay)~+l- 1 (0, 03) 1 +- ay--log v 

I-Gaussian {log v){log v- 2a} / (2a2)  (0, 03) 1 +1 a-log v 

1 -a 
Gumbel {- log(v)}a+l [O, 00) log$) 

To simplify numerical analysis, S(a )  can be replaced 
by its Riemann sum approximate; that is, ,!?(a) = 

and yl) 5 . . .  5 yn) are the ordered values of {wj = 
P ( Z j ,  & ) , j  = 1,. . . , n}. The proposed graphical model se- 
lection procedure that can handle bivariate censored data 
is described by the following steps: Select an appropri- 
ate plug-in estimator of F ;  compute K(v) and then x ( w ) ;  
plot X(v) = w - K(v) for w = F(zi, j j i )  (i = 1,. . . , n); esti- 
mate ( Y ~ ,  the parameter for the j th model, by c i j ;  compare 
the empirical plot of x ( w )  with theoretical plots of (w) 
for models under consideration; and choose a model that 
provides the closest fit to the estimated curve-that is, se- 
lect the model with smallest S(&j). Note that iterating the 
last two steps provides a visual way to obtain 6, the es- 
timator that minimizes the L2 distance between k(w) and 

C;==,{K(V(i)) - K d y i ) ) } z ( w ( i )  - q - l ) ) ?  where 210 = 0 

K,(v). 

3. ESTIMATING THE ODDS RATIO FUNCTION FOR 
THE ARCHIMEDEAN COPULA CLASS 

The local odds ratio function first proposed by Oakes 
(1989) provides an intuitive way to describe local associa- 
tion, which is defined as 

where Di (i = 1 ,2 )  denote -d/dx and -d /dy.  In gen- 
eral, O*(z,g) is a bivariate function measuring local de- 
pendence and equals 1 if ( X ,  Y )  are independent at (2, y). 
For ( X ,  Y) in the AC class, Oakes showed that O*(z, y) de- 
pends on (x, y) through some univariate function B{F(z ,  y)} 
such that f?,(w) = -u{[q!J~(w)]/[q!J&(w)]}, where &(w) = 

J~lexp{J~l-CIB,(u)/u] du}  dz, where c > 0 is a constant. 
The form of B,(w) for several models in the AC class 
are listed in Table 1. (For more detailed properties of the 
odds ratio function, see Anderson et al. 1991 and Oakes 
1989.) Oakes also derived another local dependence mea- 
sure, called local Kendall's tau and denoted by ~ ( v ) ,  which 
isgivenby~,(w) = E[sign{(X1-X2)(Y=,-Y2)}IX1AXz = 
z,Y1 A Y2 = y] = {[B,(w) - l ] / [O,(w) + l]}, where w = 
F(x,y) .  Note that -1 5 ~,(w) 5 1. Figure 1 plots O,(w) 
and 7, (v) for several AC models. The patterns of 0, (w) and 
T,(u) are the same at two levels of T :  T = .3 and 7 = .7. 
Larger values of O(w) and ~ ( w )  indicate higher dependence. 
Because w represents the joint survival probability, as time 
passes, w changes from 1 to 0. It can be seen that for Gum- 
bel's type I1 model of extreme values (which has a positive 
stable frailty), B(w) decreases exponentially as w decreases 
from 1 to 0, whereas for Frank's model and the log-copula 
model, B(w) decreases fairly linearly. For Clayton's model, 
B ( w )  and ~ ( v )  both stay at the same level. In fact, B*(z,y) 
is a constant for all (z,y) for the Clayton model. When 
7 = .3, the inverse Gaussian frailty model behaves like 
Frank's model, whereas it will approach Gumbel's model 
as 7 + .5 (not shown in Fig. 1). 

Oakes (1989) proposed a nonparametric estimator of 
B* (x, y) that applies only to discrete or grouped data. Based 
on (12), estimating O*(z, y) for continuous distributions in- 
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(a) Plot of theta(v), tau = 0.7 
0 m 

Clayton 
Gurnbel 

Logcopula 

. . . . . . . 

0 1  

0.0 0.2 0.4 0.6 0.8 1 .o 
V 

(c) Plot of theta(v), tau = 0.3 

n > 
3 a 
Y 

c-’ 

(b) Plot of tau(v), tau = 0.7 
” 1  .r 

c9 
0 

2 
-? 

CY 

9 

0 

0 

0 

0.0 0.2 0.4 0.6 0.8 1 .o 
V 

(d) Plot of tau(v), tau = 0.3 

0.0 0.2 0.4 0.6 0.8 1 .o 
V 

0.0 0.2 0.4 0.6 0.8 1 .o 
V 

Figure 1. Plots of Oa (v) and 7, (v). - Clayton, . . Gumbel, - - - Frank, --- Log-copula. (a) theta(v), tau = .7; (b) tau(v), tau = .7; (c) theta(v), 
tau = .3; (d) tau(v). tau = .3. 

volves estimating the derivatives of F ( z ,  y). Let f(z, y) = 
D1D2F(x,y) be the joint density function of ( X , Y ) .  A 
simple kernel density estimator of f(z,  y) for bivariate cen- 
sored data is given by f b ( X ,  y) = l / b 2  cy=l c,”=, @({[z - 

is a 
bivariate kernel function and b is a bandwidth parameter. 
Wells and Ye0 (1996) discussed kernel density estimation 
for bivariate censored data. Estimates of D l F ( z , y )  and 
D 2 F ( z , y )  can be obtained by integrating f ( z ,y ) .  There- 
fore, a nonparametric estimator of t9*(z, y) for continuous 
( X , Y )  is given by 

5(2)1/b}, {[Y - 5( j ) I /b})mq%),  A5(,)), where a(., 

where b, b l ,  bz, and b3 denote the bandwidth parameters for 
each component. Different bandwidths are used, because it 
is known that the optimal rate of convergence for the band- 
width of a kernel density estimator and a kernel estimator 
of an integral of a density are different. Thus 8* (z, y) re- 

quires choosing different bandwidths for b, b l ,  bz ,  and b3. In 
a simulation study not shown here, we found that 8*(z, y) 
is very sensitive to the choice of bandwidths and the nor- 
malizing constants. 

For models in the AC class, a simpler estimator of 
the odds ratio function can be derived. Let k(v) be 
the density of V = F ( X , Y ) .  It follows that k(v) = 

and hence O(v) = { [ u k ( v ) ] / [ K ( v )  - u]}. Note that the 
univariate density function k(v) can be estimated by 
the kernel estimator, k(v) = l/hC:==, cj”=, S ( [ v  - 
p(Z(i), 5(J ) ) ] /h ) f i (Af i (2 ) ,  AG(j)), where e(.) is a univariate 
kernel function satisfying the usual regularity conditions 
and h is a positive bandwidth parameter sequence. Hence 
O(w) can be estimated by e(v) = { [vk(v)]/[l?(v) - w]}. Note 
that when w is close to 0 or 1, the performance of 8(w) will 
be less stable, because its denominator is close to 0. Un- 
der fairly weak conditions, k(w) is a pointwise consistent 
estimator of k ( v ) ,  and hence 8(v) is a pointwise consistent 
estimator of O(v). The proof of the next result is given in 
the Appendix. Theorem 4 can easily be shown by applying 
Theorem 1 and Proposition 2. 

{ [4(u)I/W(v)l H [4”(v)I/[4’(.)1} = ( K ( u )  - v) [t9(v)/.I 
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(a) Clayton(tau=0.7) 

1 
Clayton 

. . . . . . . Gumbel 
Frank 

0 2  0 4  0.6 0.8 1 .o 
V 

(c) Clayton(tau=0.3) 

0.2 0.4 0.6 0.8 

V 

(e) Frank(tau=0.7) 

N 

8 

P 
Q 

f 

N 

F? 

0 

N 

0 

(b) Clayton(tau=0.7),h = 0.25 

I -  

0.2 0.4 0.6 0.8 1 .o 
V 

(d) Clayton(tau=O.B),h = 0.25 

* c  c c  .. c 
,' < * 

.. 
w 

0.2 0.4 0.6 0.8 

V 

(9 Frank(tau=0.7).h = 0.25 

0 0  0 2  0 4  0 6  0 8  1 0  0 0  0 2  0 4  0 6  0 8  1 0  

V " 
Figure 2. Plots of Empirical and Hypothesized A, (v). - Clayton, . . . Gumbel, - - - Frank, --- Log-copula. (a) Clayton (tau = .7); (b) Clayton 

(tau = .7), h = .25; (c) Clayton (tau = .3); (d) Clayton (tau = .3), h = .25; (e) Frank (tau = .7); (f) Frank (tau = .7), h = .25. 

Proposition 2. Suppose that the kernel function Q(.) 
is bounded and satisfies J IQ(t)I d t  < 00, J Q(t)  d t  = 1, 
and ItQ(t)I + 0 as It1 + 00. Suppose that the bandwidth 
sequence satisfies h + 0 and nh -+ 00 as n + 00. If 
K(Y) 3 K(w) on Y E [I, 11, then for Y E (t, 11, k(v) 3 Ic(v). 

Theorem 4. Suppose that k ( v )  4 K(Y) and L(Y) 4 
k(v) for 'u E (I ,  11, then e(v) = {[vk(w)]/[~(w)-w]} 3 O(v), 
for each Y E ( E l l ] .  

4. NUMERICAL STUDIES 

4.1 Real Data Examples 

Two datasets were analyzed for illustrative purposes. 
Dabrowska's estimator was used as the plug-in estimator of 
F in computing R(Y) and d(v). The first dataset (Danahy et 
al. 1977), introduced in Section 1, was from a study on the 
length of exercise time required to induce angina pectoris 
for 21 heart disease patients. Here TI is the exercise time 
to angina pectoris at time 0 and T2 is the exercise time to 
angina pectoris 3 hours after taking oral isosorbide dini- 

trate. Only four observations of T2 were censored due to 
patient fatigue. The estimated value of T is .39 from Wang 
and Wells (1999) and .48 from Brown et al. (1974). It turns 
out that theoretical curves of X,(Y) using ti inverted from 
.i = .48 are farther away from the nonparametric estimates 
of X(Y) than those from using .i = .39, which, however, 
still may not be the best choice. After trying several values 
of .i, we found that the theoretical curves of X,(Y) with ti 
inverted based on f = .37 are closest to the empirical X(Y). 
By inverting from ? = .37, we obtained estimates of (v for 
the models under comparison; the values (x  10W4) of S(6) 
for the Clayton, Gumbel, Frank, and log-copula models are 
12.47, 23.56, 17.29, and 13.27. This implies that the data 
more likely come from the Clayton model or the log-copula 
model than from the other two models. 

The second dataset (McGilchrist and Aisbett 1991) was 
from a study of the recurrence time of infection in kidney 
patients using a portable dialysis machine. Two successive 
recurrence times, measured from insertion until the next in- 
fection, were recorded. The catheter must be removed if an 
infection occurs. After the infection clears up, the catheter 
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Table 2. Large-Sample Simulation Results for Frank’s Model (Based on 1,000 Replications) 

V .3 .35 .4 .45 .5 .55 .6 .65 . 7  

T = .3 (a  = ,292) 
.04 -.61 

(2.50) (2.51) 
7.85 5.50 

(1.90) (2.09) 
T = .5 (a  = 5.8) 

-4.22 -2.99 
(2.27) (2.14) 
5.83 3.72 

(3.69) (3.69) 
T = .7 (CU = 11.5) 

-1.20 -2.14 
(1.71) (1.73) 
258 189 

(20.1) (19.4) 

-.83 
(2.43) 
3.89 

(2.25) 

-2.55 
(2.09) 
1.79 

(3.96) 

-1.07 
(1.77) 
143 

(19.8) 

-1.47 
(2.30) 
2.10 
(2.34) 

-2.57 
(2.1 1) 

(4.34) 

-.85 

-.41 

(1.72) 
85.6 

(20.0) 

-1.22 
(2.19) 
1.12 

(2.53) 

-2.79 
(2.13) 

(4.89) 
-2.73 

-1.29 
(1.78) 
29.6 

(21.1) 

-1 .o 

-.22 
(2.72) 

-2.1 1 

-4.34 
(5.15) 

-.77 
(1.85) 
-19.9 
(20.8) 

(2.1 1) 

(1.97) 

-.34 
(2.01) 
-1.32 
(2.91) 

-1.56 
(1.86) 

(5.41) 
-6.67 

-.69 
(1.74) 

(21.8) 
-76.3 

-.43 
(1.86) 
-3.41 
(3.09) 

-1.36 
(1.78) 
-11.2 
(5.72) 

-.71 
(1.81) 
-128 
(21.7) 

-.45 
(1.66) 
-5.90 
(3.26) 

- 1.30 
(1.68) 
-18.5 
(5.97) 

-2.21 
(1.75) 
-189 
(20.8) 

NOTE: In each cell, the first row (X103) is thz average bias of i ( v )  and the second row (XlO’) is the standard deviation of x(v).  The third row (XlO’) is the average bias of g(v) and the 
fourth row ( X  10‘) IS the standard deviation of O(v) 

is then reinserted. Censoring may be due to removal for 
other reasons or the end-of-study effect (for the second in- 
fection). Let TI be the time to the first infection, and let 
T2 be the time to the second infection. There were 38 ob- 
servations. Here 6 observations of TI were censored, 12 
observations of T2 were censored, and 3 observations were 
doubly censored. The estimate of T by Wang and Wells 
(1999) and by Brown et al. (1974) are both close to .21. Us- 
ing & = A-1(?) with ? = .21, the value ( x ~ O - ~ )  of S,(S) 
for the Clayton, Gumbel, Frank and log-copula models are 
21.72, 11.23, 12.44, and 16.14. The result implies that the 
Gumbel model provides the best fit to the data. 

4.2 Sirnulation Results 

A series of simulation studies were carried out to investi- 
gate the performance of the proposed methods. In all of the 
simulations, we used an algorithm of Genest (1987) to sim- 
ulate the Frank model and an algorithm of Prentice and Cai 
(1992) to generate data from the Clayton model. In all of 

Table 3. - Large-Sample Simulation 
Results on S (Based on 200 Replications) 

Frank Clayton Gumbel Log-copula 

Frank 
T =  .3 

Frank 
r =  .5 

Frank 
r =  .7 

Clayton 
r =  .3 

Clayton 
r =  .5 

Clayton 
r =  .7 

a 
b 

a 
b 

a 
b 

a 
b 

a 
b 

a 
b 

C 

C 

C 

C 

C 

C 

68.5% 
2.6 

(1 5) 
84.0% 

2.5 

87.5% 
2.6 

(1 3) 
1 Yo 
9.7 

(5.7) 
0.5% 

(1.3) 

14.7 
(6.42) 
0% 
11.2 
(4.8) 

1 % 
9.6 

(5.3) 
0% 
14.1 
(5.4) 

11.5 
(4.5) 
74% 
3.4 

(1.8) 
84% 
3.2 

(1.6) 
80.5% 

3.3 
(1.8) 

0.5% 

1 1.5% 
5.0 

(2.7) 
7.5% 
6.0 

(2.6) 
5.5% 
5.6 
(2.4) 
0.5% 
15.5 
(7.0) 
0% 
23.5 
(7.6) 
0% 
18.3 
(5.6) 

19% 
4.5 

(3.0) 
8.5% 
6.1 

(3.0) 
6.5% 
5.5 

(2.6) 
24.5% 

4.7 
(3.4) 

15.5% 
5.8 

(3.5) 
19.5% 

4.2 
(2.8) 

NOTE: In each cell, the first row is the percentage of the column model being selected. The 
second row ( X  lo4) IS the mean of .$ and the third row ( X  1 04) is the standard deviation of 8 

the cases, (C1, C2) were generated from Clayton’s model 
with T = .3, and the censoring rates in both components 
were controlled to be between 10 and 20%. The sample 
size was n = 250. The Dabrowska estimator of F ( z ,  y) was 
used as the plug-in estimator to compute k ( v ) ,  k(v ) ,  x(v), 
and 8(v), and .i and a were estimated by & = A-’(+). 
In computing k(v), we used the Epanechnikov kernel (i.e., 
q ( v )  = g [ l  - v2] ll[lvl 5 l]), and set the bandwidth as 
h = .25. 

Figure 2 shows the diagnostic plots of x(v)  and 8(v) 
based on one sample replication when the true model is gen- 
erated from the Clayton and Frank models. The estimated 
curves in general can capture the shape of the true theoreti- 
cal curves. It should be noted that for Clayton’s model, 8(v) 
is very unstable for v < .2. Table 2 presents summary statis- 
tics (based on 1,000 replications) of x(v)  and 6(v) for the 
Frank model. In general, x(v) has smaller bias and smaller 
variation than @v), which is reasonable because 8(v) in- 
volves estimating a density term that has a slower conver- 
gence rate. Note that as T increases, the standard deviation 
of &v) also increases. The bias of 8(v) for Frank’s model 
also increases drastically when T = .7. 

The proposed model selection approach has been evalu- 
ated; Table 3 presents the results. The “best” fitted model 
that gives the smallest value of S(&) is selected, where a! 

for the j th model is estimated by & j  = A;’(+). It can be 
seen that when the fitted model is the true one, S(&) has the 
smallest mean and standard deviation. Table 3 shows that 
when T 2 .5, the probability of selecting the true model 
exceeds 80%. In the case when T = .3, the probability of 
selecting the true model decreases to 70%. The log-copula 
model has the second-highest probability of being chosen 
when the true model is Frank’s or Clayton’s model. When 
the data are drawn from Clayton’s model, it seems very un- 
likely to choose a Gumbel model. As we have seen from the 
univariate descriptive plots in Figure 1, when T is small, the 
log-copula model is between Frank’s model and Clayton’s 
model, and the Gumbel model is very different from Clay- 
ton’s but more similar to Frank’s model. The results imply 
that the proposed model selection method can protect from 
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fitting a bad model. When T is small, the models become 
more alike, so that the mistake of selecting a wrong model 
becomes less serious. 

The bootstrap method discussed in Section 2.3 for esti- 
mating a: was also evaluated. For a sample {(Xi, E, aIi, hZi) 
i = 1 , .  . . , n}, we estimated Q by ti and then simulated 
(Vi , .  . . , V:) from V N KG(v) ,  which we then used to 
compute S*(&*). The bootstrap process was repeated 100 
times. The sample standard deviation of S* (ti*), denoted 
by 69, became an estimate of ag. When the true model 
was generated from the Clayton model, the sample means 
of 89 (x104) based on 200 simulation replications were 
1.99, 1.69, and 1.92 under r = .3, .5, and .7. When the true 
model was from Frank's model, the sample means of 6g 
(x104) were 1.7, 1.56, and 1.66 under T = .3, .5 ,  and .7. 
Compared with the true value of ag listed in the third row 
of each entry in Table 3, we find that Bs tends to slightly 
overestimate 02, but the bias is small. 

5. CONCLUSIONS 

In this article we have studied several model selection 
strategies for the class of Archimedean copula models 
with bivariate censored data. We expressed the important 
function K ( v )  as a statistical functional of the joint sur- 
vival function so that it can be estimated using the von 
Mises functional techniques discussed by Gill (1989). The 
proposed approach is quite flexible for adjusting various 
data-generating mechanisms. As mentioned previously, the 
plugged-in estimator F should account for the underlying 
censoring structure. Auxiliary information can also be in- 
corporated in the stage of estimating F .  For example, if the 
marginal distributions are specified and can be estimated 
by F; (.) (i = 1,2), the plug-in estimator may be estimated 
by p ( x ,  y) = &(x)&(p)@(x, y), where @(x, y) can be ob- 
tained nonparametrically based on a bivariate product limit 
expression of Dabrowska (1988) or an integral equation re- 
lated to the martingale covariance function of Prentice and 
Cai (1992). When covariate information is available, fi may 
be estimated using the idea described by Prentice and Cai 
(1992). 

APPENDIX: PROOFS 

A.l Proof of Theorem 1: Weak Convergence of 
dTm4 - W V ) )  

Assume that W(z,y) = f i { p (z ,  y) - F ( z ,  y)} + W ( z ,  y), 
where W(z ,y)  is a continuous Gaussian process on the space 
D[O, 711 x [0, T Z ]  with the Skorohod topology and F(r1, ~ 2 )  = > 
0. One can write -fi{k(w) - ~ ( w ) )  = &(v) + &w) + ~ ( w ) ,  
where 

The proof contains three steps. Specifically, we show that 
&(u) 3 J J  n ( F ( z , y )  > ~ ( d z , d y )  = +) ,P(v )  3 
J J ~ ( z , y ) ~ ~ ( d z , d y )  = P ( w ) .  and %u) = o p ( l ) .  Let 

s u ~ d ( ( ~ l , y l ~ , ~ ~ z , y z ~ ~ ~ ~  If(z1, pi) - f(zz, YZ)~ to be the modulus of 
U,"=lC, be a partition of [o,T1] x [O,TZ]. Define w ( f , ~ )  = 

continuity of f .  

A.I.1 Part I: Proof of Weak Corlvergence of &(v). First, 
we show that &(u) converges in distribution to cy(w). The set 
{ (2, y) : F ( z ,  y) > w} can be approximated by a union of disjoint 
rectangles. For any rectangular set, B = { (z, y) : a 5 z 5 b, c 5 
y 5 d } ,  the weak convergence of W ( z ,  y) to W ( z ,  y) implies that 

Jab J," W(dz ,  dy). Letting the mesh of rectangular grids become 
finer, one can show that for each w E [E,l],&(v) 3 01(w). Fur- 
thermore, one can show that for any finite sequence (wl, . . . , wk) 
in [E, 11, the distribution of {&(v1), . . . , &(vk)} converges to that 
of {a(v l ) ,  . . . , a(uk)} .  It remains to show that the process &(v) is 
tight, which can be proved by showing that for any E and q > 0, 
there exists 6 > 0 such that as n large for w E [ E ,  11, 

Pr( sup l&(w) - &(u)l > E )  5 67. (A.1) 

For w 5 u, it is easy to see that n ( F ( z , y )  > w) - n ( F ( z , y )  > 
u) = n(v < ~ ( z , y )  5 u). Let C,(v,6) = C, n { ( z , ~ )  : w < 
F ( z ,  y) 5 v+6} and let U{I,C, (w, 6) be a collection of nonempty 
sets partitioning {(z, y) : w < F ( z ,  y) 5 w + 6 ) .  Note that J*  << 
J .  Without loss of generality, assume that C, (w, 6) is a rectangle 
for each j = 1 , .  . . , J " ;  otherwise, it can be approximated by a 
union of rectangles. For a rectangle set B, it is easy to see that 
IJJ ,W(dz,dy) I  5 2supB I ~ ( z i , y i ) - ~ ( z z , y z ) l , w h e r e s u p ,  
means S U ~ ~ ~ , , ~ ~ ~ ~ ~ ~ ~ , ~ ~ ~ ~ ~ .  Given E > 0, one can find E Z  such that 

Jab J," W(dz, dy) = W(b) d )  - W(b, c)  - *(a ,  d)  + W ( a ,  c )  * 

v l u l v + 6  

Pr( sup l&(w) - &(.)I > E )  
V < U < U + S  

5 J* x Pr{w(k ,  max diam(Cj(w,6))) > E Z } .  
1SjS.J. 

By tightness of W(z,y), for any E Z ,  q > 0, it is possible that 
with appropriate choice of 6 > 0 and the partition, we have 
Pr{w(W, r n a x l ~ j ~ p  diam(Cj((v, 6))) > E Z }  5 6q/  J* as n + 00. 

A.1.2 Part II: Proof of Weak Convergence of &w). Let W -  
and W +  be the negative and positive parts of W ,  which can be 
shown to converge weakly to W-(z,y) and W+(z,y).  One can 
write &w) = 8(w) - R(v), where 

B(v) = & n[v - ( P  - F)+(x ,  y) < F ( X ,  y) 5 V ] F ( ~ Z ,  dy) 

i q w )  = 6 1 / n[v < ~ ( z ,  y) 5 21 + ( P  - ~ ( z ,  Y ) I F ( ~ ~ ,  dy). 

ss 
and 
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By tightness of n'/2{k(z, y) - F ( z ,  y)}, it is again possible to 
choose an appropriate mesh to get w { f i ( P  - F ) + , m a x l ~ , ~ J  
diam(C,)} + 0. Thus (A.2) is proved. Similar arguments hold to 
show that (A.3) and (A.4) is a consequence of (A.2) and (A.3). 

Note that the mapping v e soT1 soT2 f ( z ,  y)pv(dz,dy) is a 
continuous function of v E [El 11 and also the mapping f e soT2 f(z, y)pv(dz, dy) is a bounded linear (and hence continu- 
ous) function o f f .  Then by theorem 2.3.5 of Shorack and Wellner 
(1986, p. 48), 

J' f i { P  - F H z ,  Y)pv(dz, dy) + 

and hence for the equivalent process (with the sample path almost 
surely identical), 

W(z, y)pv(dz, dy), ss 

Similarly, one can show that 

- {Sn,j - In , j }pu(C3) .  

It is easy to see that S n , j / f i  + p  0 and In,,/& + p  0. Under 
H2, ps(Cj) is continuous at s E [El 11, and it then follows that as 
A + 0, 

Note that 

j=1 

J 

- { P -  F}f(zz,y2)1 

- { P  - F}+(Z2,Y2)1 

5 k(v)w{&i(@ - F)' ,  max diam(Cj)}. 
1 5 ~ i J  

where S:,3 =  SUP(,,^)^^, I(@ - F)- (z ,y) ( .  Using similar tech- 
niques as in Part I, one can prove that for any E > 0, Pr(l+(v) I > 
E )  --f 0. Note that uniform consistency of k ( v )  can be 
proved by showing that supuEv lCi(v)/fil +SUP,EU Ib(v) / f i l  
supvEu l+(v)/fi l  --sp 0. The details are omitted. 

A.2 Proof of Theorem 2: Limiting Distribution of 
?P{& - a }  

The proof of the result is like the classical proof of the 
limiting normality of an M estimator (see Shorack and Well- 
ner 1986, p. 254). 6 solves M ( 6 )  = 0, where M ( a )  = 
d / d a ~ { l ? ( v )  - K , ( V ) } ~  dv = 0. If K,(v) is twice differen- 
tiable with respect to a: and the derivatives are bounded, then 
it follows that n112(d - a )  = - ( [aM(a)] /da: ) - 'n ' / 'M(a)  
+ o p ( l ) ,  where -n112M(a) + J{[dK,(v)]/da}X(v) dv and 

{ k ( v )  - K,(v)} dv = 2J( [dK,(~) ] /da : )~  dv + o p ( l ) .  
[ d M ( ~ ~ ) ] / d 0  = 2 J ( [ B K a ( ~ ) ] / d a ) ~  dv - 2J{[a2Kn(v)]/da2} 

A.3 Proof of Proposition 2: Consistency of &v) 

Because k ( v )  only jumps at w = k(?(q,&~) with 
mass P(A?(,,, Afi(,)) for v E [E, 11, one can write k(v) = 
l / h ~ i  $[(v - u)/hl d k ( u ) .  BY writing i ( v )  - k(v) = i ( v )  - 

k(v) + &(v) - k(v), where i ( v )  = l / h  J: Q[(v - u) /h]  dK(u) ,  we 
want to show that i (v)-k(v)  = op(l) and k (v ) - k (v )  = o p ( l ) .  By 
change of variables and integration by parts, one can write i(v) - 

ht) - K ( v  - ht)] 1: + l / h  J," { k ( v  - ht) - K ( v  - ht)} dQ(t ) ,  where 

i(v) = l / h  J; Q[(v-u)/h]{dk(u)-dK(u)} = - l /hQ( t )[k(w-  
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[c,  d] = [(w - l ) /h ,  (w - E)/h]. By the consistency of k, it can be  
shown that k ( w  - ht) 3 K ( u  - ht) and by boundedness of *I(.), 
thus k(v) 4 k(w). Convergence of i(w) t o  k(w) can be shown 
using techniques similar to  those of Parzen (1962). 

[Received September 1996. Revised April 1999.1 

REFERENCES 
Anderson, J. E., Louis, T. A., Holm, N. V., and Harvald, B. (1992), “Time- 

Dependent Association Measures for Bivariate Survival Distributions,” 
Journal of the American Statistical Association, 87, 641450. 

Bandeen-Roche, K. J., and Liang, K. Y. (1996), “Modeling Failure-Time 
Associations in Data With Multiple Levels of Clustering,” Biometrika, 
83, 2MO. 

Barbe, P., Genest, C., Ghoudi, K., and Bruno, R. (1996), “On Kendall’s 
Process,” Journal of Multivariate Analysis, 58, 197-229. 

Brown, B. W. M., Hollander, M., and Korwar, R. M. (1974), “Nonparamet- 
ric Tests of Independence for Censored Data With Applications to Heart 
Transplant Studies,” in Reliability and Biometry: Statistical Analysis of 
Life Length, Serfling, R. J. (Ed.) pp. 327-354. 

Campbell, G., and Foldes, A. (1982), “Large-Sample Properties of Non- 
parametric Bivariate Estimators with Censored Data,” in Nonparametric 
Statistical Inference, Colloquia Methemetica-Societatis, Janos Bolyai, 
eds. B. V. Gnedenko, M. L. Puri, and I. Vincze, Amsterdam: North- 
Holland, pp. 103-122. 

Clayton, D. G. (1978). “A Model for Association in Bivariate Life Tables 
and Its Application in Epidemiological Studies of Familial Tendency in 
Chronic Disease Incidence,” Biometrika, 65, 141-151. 

Clayton, D. G., and Cuzick, J. (1985), “Multivariate Generalizations of the 
Proportional Hazards Model,” Journal of the Royal Statistical Society, 
Ser. A., 148, 82-117. 

Dabrowska, D. M. (1988). “Kaplan-Meier Estimates on the Plane,” The 
Annals of Statistics, 16, 1475-1489. 
- (1989), “Kaplan-Meier Estimate on the Plane: Weak Convergence, 

LIL, and the Bootstrap,” Journal of Multivariate Analysis, 29, 308-325. 
Danahy, D. J., Burwell, D. T., Aranow, W. S., and Prakash, R. (1977), “Sus- 

tained Henodynamic and Antianginal Effect of High-Dose Oral Isosor- 
bide Dinitrate,” Circulation, 55, 381-387. 

Frank, M. J. (1979), “On the Simultaneous Associativity of F ( x ,  y) and 
1 - x + y - F ( x ,  y),” Aequantiones Mathematicae, 19, 194-226. 

Genest, C. (1987), “Frank’s Family of Bivariate Distributions,” Biometrika, 
74, 549-555. 

Genest, C., Ghoudi, K., and Rivest, L. P. (1995), “A Semiparametric Es- 
timation Procedure of Dependence Parameters in Multivariate Families 
of Distributions,” Biometrika, 82, 543-552. 

Genest, C., and MacKay, J. (1986), “The Joy of Copulas; Bivariate Distri- 
butions With Uniform Marginals,” The American Statistician, 40, 280- 
283. 

Genest, C., and Rivest, L. P. (1993), “Statistical Inference Procedures for 
Bivariate Archimedean Copulas,” Journal of the American Statistical 
Association, 88, 1034-1043. 

Gill, R. D. (1989), “Non- and Semi-parametric Maximum Likelihood Es- 
timators and the von Mises Method (Part l),” Scandinavian Journal of 
Statistics, 16, 97-128. 

Gill, R. D., van der Laan, M. J. and Wellner, J. A. (19931, “Inefficient 
Estimators for Three Multivariate Models,” Preprint 769, Department 
of Mathematics, University of Utrecht. 

Gumbel, E. J. (1960), “Bivariate Exponential Distributions,” Journal of the 
American Statistical Association, 55, 698-707. 

(1961), “Bivariate Logistic Distributions,” Journal of the American 
Statistical Association, 56, 335-349. 

Hougaard, P. (1986), “A Class of Multivariate Failure Time Distributions,” 
Biometrika, 73, 671478. 

Hsu, L., and Prentice, R. L. (1996), “On Assessing the Strength of Depen- 

dency Between Failure Time Variates,” Biometrika, 83, 491-506. 
Joe, H. (19931, “Parametric Families of Multivariate Distributions With 

Given Margins,” Journal of Multivariate Analysis, 46, 262-282. 
Lin, D. Y., and Ying, Z. (1993), “A Simple Nonparametric Estimator of the 

Bivariate Survival Function under Univariate Censoring,” Biometrika, 

Lin, D. Y., Sun, W., and Ying, Z. (1999), “Nonparametric Estimation of 
the Gap Time Distributions for Serial Events with Censored Data,” 
Biometrika, 86, 59-70. 

Lindeboom, M., Van den Berg, G. J. and Gerald, J. (19941, “Heterogeneity 
in Models for Bivariate Survival: The Importance of the Mixing Distri- 
bution,’’ Journal of the Royal Statistical Socieq, Ser. B, 56, 49-60. 

McGilchrist, C. A., and Aisbett, C. W. (1991), “Regression with Frailty in 
Survival Analysis,” Biometrics, 47, 461466. 

Marshall, A. W., and Olkin, I. (1988), “Families of Multivariate Distribu- 
tions,’’ Journal of the American Statistical Association, 83, 834-841. 

Murphy, S. (19941, “Consistency in a Proportional Hazards Model Incor- 
porating a Random Effect,” The Annals of Statistics, 22, 712-731. 

Nielsen, G.  G., Gill, R. D., Andersen, P. K., and Sorensen, T. I. (1992), 
“A Counting Process Approach to Maximum Likelihood Estimation in 
Frailty Models,” Scandinavian Journal of Statistics, 19, 25-44. 

Oakes, D. (1982), “A Concordance Test for Independence in the Presence 
of Bivariate Censoring,” Biometrics, 38, 45 1455.  
- (1989), “Bivariate Survival Models Induced by Frailties,” Journal 

of the American Statistical Association, 84, 487493. 
Parzen, E. (19621, “On Estimation of a Probability Density Function and 

Mode, The Annals of Mathematical Statistics, 33, 1065-1076. 
Prentice, R. L., and Cai, J. (1992), “Covariance and Survivor Function Es- 

timation Using Censored Multivariate Failure Time Data,” Biometrika, 

Romano, J. P. (1988), “A Bootstrap Revival of Some Nonparametric Dis- 
tance Tests,” Journal of the American Statistical Association, 83, 698- 
708. 

Shih, J. H., and Louis, T. A. (1995), “Inferences on the Association Pa- 
rameter in Copula Models for Bivariate Survival Data,” Biornetrics, 51, 
1384-1399. 

Shorack, G., and Wellner, J. A. (1986), Empirical Processes With Applica- 
tions to Statistics, New York: Wiley. 

Tsai, W. Y., Leurgrans, S., and Crowley, J. J. (1986). “Nonparametric Esti- 
mation of a Bivariate Survival Function in Presence of Censoring,” The 
Annals of Statistics, 14, 1351-1365. 

van der Laan, M. J. (1992), “Efficient Estimator of the Bivariate Survival 
Function for Right-Censored Data,” Technical Report 337, University 
of California, Berkeley, Dept. of Statistics. 

(1996), “Efficient Estimation in the Bivariate Censoring Model and 
Repairing MLE,” The Annals of Statistics, 24, 596-627. 

van der Vaart, A. W., and Wellner, J. A. (1993), Weak Convergence and 
Empirical Processes, New York: Springer-Verlag. 

Vaupel, J. W., Manton, K. G., and Stallard, E. (1979), “The Impact of Het- 
erogeneity in Individual Frailty and the Dynamics of Mortality,” De- 
mography, 16, 439454. 

Visser, M. (1996), “Nonparametric Estimation of the Bivariate Sur- 
vival Function with an Application to Vertically Transmitted AIDS,” 
Biometrika, 83, 507-51 8. 

Wang, W., and Wells, M. T. (1997), “Nonparametric Estimators of the 
Bivariate Survival Function under Simplified Censoring Conditions,” 
Biometrika, 84, 863-880. 

Wang, W., and Wells, M. T. (1998), “Nonparametric Estimation of Suc- 
cessive Duration Times under Dependent Censoring,” Biometrika, 85, 

Wang, W., and Wells, M. T. (1999), “Estimation of Kendall’s Tau Under 
Censoring,” technical report, Institute of Statistical Science, Academia 
Sinica, Taiwan. 

Wells, M. T., and Yeo, K. P. (1996), “Density Estimation With Bivariate 
Censored Data,” Journal of the American Statistical Association, 91, 
1566-1574. 

80, 573-581. 

79, 495-512. 

56 1-572. 

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 2

0:
13

 0
2 

O
ct

ob
er

 2
01

4 


