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1. INTRODUCTION

Current status data commonly arise in animal tumorigenic-
ity and epidemiologic investigations of the natural history of
a disease. Speci� cally, the researcher has only the information
about whether the failure time of interest lies before or after the
observed monitoring time. Such a data structure is also called
“interval censoring of the case I” (Groeneboom and Wellner
1992). In this article we consider the bivariate case. Bivariate
analysis is useful when one wants to investigate the dependent
relationship between two variables. Our work was motivated
by a community-based study of cardiovascular diseases in Tai-
wan conducted to investigate whether the onset ages of some
common cardiovascular diseases, speci� cally hypertension,di-
abetes mellitus, and hypercholesterolemia, are correlated with
one another. Because the natural history of these chronic dis-
eases was dif� cult to trace precisely, the data contained only
information about whether or not a subject under the study had
already developed the diseases and about the subject’s current
age at the time of the study.

Let .T1; T2/ be a pair of failure times of interest and let
Cj be the monitoring time of Tj .j D 1;2/. Bivariate cur-
rent status data are of the form fC1;C2; ±1 D I .T1 · C1/;

±2 D I .T2 · C2/g. The observed data are of the form .C1k;C2k;

±1k; ±2k/ .k D 1; : : : ; n/, which are independent and identically
distributed replications of .C1; C2; ±1; ±2/. Note that when the
two failure times are measured from the same subject, as in
the foregoing example, usually C1 D C2. A number of sta-
tistical methods have been developed for univariate current
status data. For example, nonparametric estimation of the mar-
ginal distribution function has been considered by Ayer, Brunk,
Ewing, Reid, and Silverman (1955), Peto (1973), Turnbull
(1976), and Groeneboom and Wellner (1992). The algorithm
for computing the nonparametric maximum likelihood esti-
mator (NPMLE) for current status data was introduced by
Groeneboom and Wellner (1992, pp. 66–67). Asymptotic prop-
erties of the NPMLE were also examined by Groeneboom
and Wellner (1992), who showed that this estimator converges
pointwise at rate n1=3 to a complex limiting distribution re-
lated to Brownian motion. Properties of smooth functionals of
the NPMLE were studied by Groeneboom and Wellner (1992)
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and Huang and Wellner (1995). Semiparametric analysis of re-
gression models for current status data have been studied by
Finkelstein (1986), Rabinowitz, Tsiatis, and Aragon (1995),
Rossini and Tsiatis (1996), and Lin, Oakes, and Ying (1998),
to name just a few. Although bivariate analysis of current status
data has many interesting applications, there has not been much
literature in this direction to date. Wang and Ding (2000) con-
sidered semiparametric estimation of the association parameter
in a bivariate copula model.

The main objective of the present work is to develop a non-
parametric inference procedure for testing independence be-
tween two failure time variables given only bivariate current
status data. It is important to note that the semiparametric pro-
cedure proposed by Wang and Ding (2000) can be directly
applied to test independence only if the parameter under in-
dependence is located at the interior of the parameter space.
Some modi� cation is required to handle cases when the true
parameter lies on the boundary. Independence tests for bivari-
ate right-censored data have been developed by Oakes (1982),
Shih and Louis (1996), and Hsu and Prentice (1996), among
others. The test proposed by Oakes (1982) is based on esti-
mating Kendall’s tau under the null hypothesis. Shih and Louis
(1996) studied several test statistics based on marginal martin-
gale residuals.

Our ideas are similar to those discussed by Hsu and Prentice
(1996), which can be viewed as a generalizationof the Mantel–
Haenszel test. Speci� cally, Hsu and Prentice constructed a se-
quence of 2 £ 2 tables formed at observed failure times and
then proposed a test statistic based on the merged table. Later
we show that bivariate current status data can be naturally rep-
resented by 2 £ 2 tables formed at observed monitoring times.
However, the techniques used for current status data are differ-
ent from those for right-censoreddata, which use the martingale
theory extensively.

The article is organized as follows. The main result is pre-
sented in Section 2. Simulation analysis and real data analysis
are given in Sections 3 and 4, and concluding remarks are pro-
vided in Section 5.

2. THE PROPOSED METHODOLOGY

2.1 Preliminary

Let H0 :T1 ? T2 and H 0
0 :T1 ? T2j.C1; C2/. It is obvious that

if H0 is true, then H 0
0 must be true and if H 0

0 is false, then
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H0 must be false. Our original goal is to test the hypothe-
sis H0 :T1 ? T2. However, given current status data, we be-
lieve that it is impossible to capture any departure from H0

when H 0
0 is true. For example, when C1 D C2, it is possi-

ble to verify whether F .t; t/ D F1.t/F2.t/, which describes
independence along the diagonal, C1 D C2 D t . However, no
information is available to judge whether off-diagonal indepen-
dence [i.e., F .t1; t2/ D F1.t1/F2.t2/ for t1 6D t2] also holds. In
other words, current status data provide only limited informa-
tion to identify the dependent relationship between T1 and T2.
Therefore, here we focus on deriving tests for the null hypo-
thesis, H 0

0 :T1 ? T2j.C1;C2/. We should mention that although
we set the null hypothesisto be H 0

0 , under the Neyman–Pearson
framework, any valid test for testing H 0

0 is also a valid test for
testing H0, because it gives the correct type I error rate.

Given that .C1;C2/ D .c1; c2/, one can construct the follow-
ing two-by-two table:

±2 D 1 ±2 D 0
±1 D 1 N11.c1; c2/ N10.c1; c2/

±1 D 0 N01.c1; c2/ N00.c1; c2/

N.c1; c2/

.

The cell counts are de� ned as N.c1; c2/ D
Pn

kD1 I .C1k D c1;

C2k D c2/ and Nij .c1; c2/ D
Pn

kD1 I .C1k D c1;C2k D c2;

±1k D i; ±2k D j/ for i; j D 0; 1. The proposed test procedure is
constructed by merging the tables according to the distribution
of .C1;C2/, which has a form similar to the Cochran–Mantel–
Haenszel test (Agresti 1990, p. 231). Independence tests based
on merging several 2£ 2 tables, some of which require large ob-
servations in each table, have been discussed by Agresti (1990).
Our proposed method, in contrast, is valid whether C1 and C2

are discrete or continuous and can handle empty cells. In fact,
the method is designed particularly for merging sparse 2£ 2 ta-
bles, which commonly arise in applicationsfor bivariate current
status data.

Speci� cally, for the kth patient with monitoring times .c1k;

c2k/, we can construct a 2 £ 2 table that has only one en-
try and three empty cells. Given that .C1k; C2k/ D .c1k; c2k/,
the cell counts fI .±1k D 1; ±2k D 1/, I .±1k D 1; ±2k D 0/,
I .±1k D 0; ±2k D 1/, and I .±1k D 0; ±2k D 0/g jointly fol-
low a multinomial distribution with probabilities equal to
fP11.c1k; c2k/, P10.c1k; c2k/, P01.c1k; c2k/, and P00.c1k; c2k/g,
where P11.c1k; c2k/ D Pr.T1 · c1k; T2 · c2k/, P10.c1k; c2k/ D
Pr.T1 · c1k; T2 > c2k/, P01.c1k; c2k/ D Pr.T1 > c1k; T2 · c2k/,
and P00.c1k; c2k/ D Pr.T1 > c1k; T2 > c2k/. Under H 0

0 (as well
as under H0), it follows that P11.c1k; c2k/ D F1.c1k/F2.c2k/,
P10.c1k; c2k/DF1.c1k/S2.c2k/, P01.c1k; c2k/ D S1.c1k/F2.c2k/,
and P00.c1k; c2k/ D S1.c1k/S2.c2k/, where Fj .t/ D Pr.Tj · t/,
Sj .t/ D 1 ¡ Fj .t/ .j D 1; 2/, and G.c1; c2/ D Pr.C1 · c1;

C2 · c2/.
Our idea for testing independence between T1 and T2 is to

compare observed cell counts in these 2 £ 2 tables with their
expected values under H 0

0. Large values of the difference indi-
cate departure from the null hypothesis. Combining all of the
tables, each with three empty cells and a single entry, the ob-
served cell counts in the merged table become

Nab D
nX

kD1

I .±1k D a; ±2k D b/ D
X

c1;c2

Nab.c1; c2/

.a; b D 0;1/;

where the last sum is over all observed censoring time values.
Under the null hypothesis H 0

0, which is conditional on the ob-
served censoring times, the expected counts in the merged table
become

Eab D
nX

kD1

Eab;k D
nX

kD1

F1.c1k/aS1.c1k/1¡aF2.c2k/bS2.c2k/1¡b

.a; b D 0;1/;

which can be estimated by plugging in the corresponding mar-
ginal NPMLEs of Fj .¢/ and Sj .¢/, denotedby OFj .¢/ and OSj .¢/ D
1 ¡ OFj .¢/ .j D 1; 2/. Therefore, Eij can be estimated by

OEab D
nX

kD1

OEab;k D
nX

kD1

OF1.c1k/a OS1.c1k/1¡a OF2.c2k/b OS2.c2k/1¡b

.a;b D 0; 1/: (1)

The max–min formula for computing OFj is given by

OFj

¡
c.j i/

¢
D max

l·i
min
k¸i

Pk
mDl ±.jm/

k ¡ l C 1
;

where c.j1/ < ¢ ¢ ¢ < c.jn/ are ordered observed values of
.Cj1; : : : ; Cjn/ and ±.j i/ .j D 1; 2/ are the associated indicators
for C.j i/. Their properties have been discussed by Groeneboom
and Wellner (1992) and Huang and Wellner (1995).When H 0

0 is
true, .N00 ¡ OE00/=n will be close to 0 as n is large. Deviation
of this measure from 0 indicates that association exists between
T1 and T2.

2.2 The Proposed Test

Under the null hypothesis, .N11;N10; N01;N00/ has a multi-
nomial distribution, which is conditional on censoring times,
with cell probabilities .P11;P10;P01;P00/, where

Pab D
Z Z

F1.c1/aS1.c1/1¡aF2.c2/bS2.c2/1¡bGn.dc1; dc2/

.a;b D 0;1/:

Here Gn.c1; c2/ D
Pn

kD1 I .C1k · c1;C2k · c2/=n is the em-
pirical estimator of G.c1; c2/. It is easy to see that

X

aD0;1

X

bD0;1

Pab D 1:

If the marginal functions were known, then we could test H 0
0

using the Pearson chi-squared statistic

X

aD0;1

X

bD0;1

.Nab ¡ Eab/2

Eab

with 3 degrees of freedom (df ). Because Eab .D nPab/ is un-
known, it is natural to use its estimate OEab in the test. However,
there are no longer 3 df after replacing Eab by OEab , because

OE00 ¡ N00 D N10 ¡ OE10 D OE11 ¡ N11 D N01 ¡ OE01: (2)
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To see why (2) is true, note that

OE00 ¡ N00 C OE10 ¡ N10

D
nX

kD1

OS1.c1k/ OS2.c2k/ ¡
nX

kD1

I .±1k D 0; ±2k D 0/

C
nX

kD1

[1 ¡ OS1.c1k/] OS2.c2k/ ¡
nX

kD1

I .±1k D 1; ±2k D 0/

D
nX

kD1

OS2.c2k/ ¡
nX

kD1

I .±2k D 0/

D
nX

kD1

[ OS2.c2k/ ¡ 1 C ±2k]

D
nX

kD1

[±2k ¡ OF2.c2k/]:

The last quantity equals 0 because of the self-consistency prop-
erty of the univariate current status NPMLE (Groeneboom and
Wellner 1992). Therefore, OE00 ¡ N00 D N10 ¡ OE10. Similarly,
we can show that OE00 ¡ N00 D N01 ¡ OE01 and OE11 ¡ N11 D
N10 ¡ OE10. Because the degrees of freedom reduce to 1 after
replacing Eab by OEab, we need only concentrate on one of the
four terms, say, OE00 ¡ N00.

Note that OE00 ¡ N00 D OE11 ¡ N11 is the sum of the differ-
ences between ±1k±2k and their estimated conditional expecta-
tions, OF1.c1k/ OF2.c2k/, under the null hypothesis. Therefore, a
signi� cant deviationfrom 0 of . OE00 ¡ N00/2 indicates violation
of the null hypothesis.Thus we propose using the test statistic

Q D
.N00 ¡ OE00/2

davar.N00 ¡ OE00/
;

where davar.N00 ¡ OE00/ is a consistent estimator of the asymp-
totic variance of .N00 ¡ OE00/. In Appendix A we show that
under the null hypothesis, n¡1=2.N00 ¡ OE00/ converges in dis-
tribution to N.0; ¾ 2/, and hence Q converges in distribution to
a chi-squared distribution with 1 df if O¾ 2 D davar.N00 ¡ OE00/=n

is a consistent estimator of ¾ 2. Under the alternative hypoth-
esis, n¡1=2.N00 ¡ OE00/ converges to a non-zero mean normal
distribution.

Alternatively,we can construct a test based on an estimate of

E[cov.±1; ±2/jC1; C2] D E
£
f±1 ¡ F1.C1/gf±2 ¡ F2.C2/g

¤
;

where cov.±1; ±2/jC1;C2 is interpreted as the conditional co-
variance between ±1 and ±2 given .C1;C2/, whose expectation
equals E[F .C1; C2/¡ F1.C1/F2.C2/] and can be estimated by
.N11 ¡ OE11/=n. As mentioned earlier, the foregoing covariance
measure reduces to 0 under H 0

0. Furthermore, it is easy to see
that E[cov.±1; ±2/jC1;C2] equals

¡E[cov.±1;1 ¡ ±2/jC1; C2] D ¡E[cov.1 ¡ ±1; ±2/jC1; C2]

D E[cov.1 ¡ ±1;1 ¡ ±2/jC1;C2]:

When the marginal distributions are known completely, the
foregoing identity implies that we only need to consider any
one of the four covariance measures. When the marginal distri-

butions are estimated by their NPMLE’s, such an argument is
still true, which can also be justi� ed by (2).

Explicit estimation of ¾ 2 is very technically involved, how-
ever, because of the complexity of the NPMLE’s. The boot-
strap method provides a convenient numerical solution to
obtain a variance estimator. Speci� cally, from the original data,
f.C1i ;C2i; ±1i; ±2i/ i D 1; : : : ; ng, we can generate a pseudo-
dataset, f.C1k;C2k; ±¤

1k; ±¤
2k/ k D 1; : : : ; ng, where ±¤

jk is a

Bernoulli random variable with probability OFj .Cjk/ .j D 1;2/.
The procedure is repeated m times. Let .N ¤

00;r ¡ OE¤
00;r/ be the

counterpart of .N00 ¡ OE00/ for the r th bootstrapped sample.
Then avar.N00 ¡ OE00/ can be estimated by the sample variance
of .N¤

00;r ¡ OE¤
00;r / .r D 1; : : : ; m/; that is,

n O¾ 2
b D

mX

rD1

.N¤
00;r ¡ OE¤

00;r ¡ NR¤/2=.m ¡ 1/;

where

NR¤ D
mX

rD1

.N¤
00;r ¡ OE¤

00;r/=m

is the sample mean. As long as n;m ! 1, O¾ 2
b ! ¾ 2. The re-

sulting test statistic

Qb D
.N00 ¡ OE00/2

n O¾ 2
b

(3)

converges to chi-squared distribution with 1 df under the null
hypothesis. Although the bootstrap method for variance esti-
mation is straightforward and asymptotically valid, the power
of the resulting test is not satisfactory in our simulation analy-
sis. We providean explanationof this phenomenonin Section 4.

To improve the power, we derive an analytic formula, given
in Appendixes B–D, for variance estimation. The proposed
variance estimator is generally complicated. However, when
C1 D C2 D C , which occurs when the paired measurements are
taken from the same subjects, the formula can be simpli� ed to

O¾ 2
p D n¡1

nX

kD1

£ OS1.C1k/ OS2.C2k/

£f 1 C OS1.C1k/ C OS2.C2k/ ¡ 3 OS1.C1k/ OS2.C2k/g

C .1 ¡ ±1k/.1 ¡ ±2k/
¡ OE00;.¡k/ ¡ OE00

¢¤
; (4)

where OE00 is de� ned in (1) and OE00;.¡k/ is the delete-one-
jackknife version of OE00. Speci� cally, OE00;.¡k/ is calculated by
removing the kth patient in the estimation of marginal survival
functions before plugging into (1). Accordingly, we can con-
struct the test statistic

Qp D .N00 ¡ OE00/2

n O¾ 2
p

; (5)

which also converges to chi-squared distribution with 1 df
as n ! 1.
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2.3 Finite-Sample Adjustment for Bias

Although the proposed test has nice asymptotic behavior
with the regular convergence rate, bias adjustment is useful, es-
pecially when the sample size is not large. The bias comes from
replacing the unknownmarginal functionsby their NPMLE’s in
(1) and (4). Let n¡1=2.N00 ¡ OE00/ D n¡1=2.N00 ¡ E00/ C B1n

and O¾ 2
p D ¾ 2 C B2n . As n ! 1, B1n and B2n will shrink to 0,

but when the sample size is not large, they are not ignorable
and will result in inaccurate type I error (usually higher than
the nominal level).

To improve the � nite-sample performance, we can estimate
B1n and B2n using the bootstrap method and then eliminate
their effect in the testing procedure. Speci� cally, for a boot-
strapped sample, f.C1k;C2k; ±¤

1k; ±¤
2k/ k D 1; : : : ; ng, we can

compute the statistics U ¤ D n¡1=2.N ¤
00 ¡ OE¤

00/ and . O¾ ¤
p /2. We

repeat the procedure m times, and let OUb and O¾ 2
pb be the av-

erage of the two estimators based on m bootstrap samples and
let OB1n D OUb ¡ n¡1=2.N00 ¡ OE00/ and OB2n D O¾ 2

pb ¡ O¾ 2
p . For

relatively large m, say m D 500, OB1n and OB2n would provide
good approximation of the true bias terms. Subtracting these
estimated bias terms from the test statistics (3) and (5) yield the
bias-adjusted versions of the test statistics,

Qb.a/ D
.N00 ¡ OE00 ¡ n1=2 OB1n/2

n O¾ 2
b

(6)

and

Qp.a/ D
.N00 ¡ OE00 ¡ n1=2 OB1n/2

n. O¾ 2
p ¡ OB2n/

: (7)

We show in Section 3 that the adjusted tests perform much bet-
ter in � nite samples than the unadjusted versions.

2.4 Weight Adjustment

The power and ef� ciency of the test may be improved by
including a weight function in the statistic. Note that we can
write N00 ¡ OE00 D

P
k.N00;k ¡ OE00;k/. Therefore, the modi-

� ed test is related to the statistic
P

k Wk.N00;k ¡ OE00;k/, where
Wk D w.C1k;C2k/ is the weight assigned to the kth subject ac-
cording to the observed monitoring times. We can write

ZW D n¡1=2
X

k

Wk .N00;k ¡ OE00;k/

D n1=2
Z

c1

Z

c2

w.c1; c2/fN00.c1; c2/ ¡ OS1.c1/ OS2.c2/g

£ Gn.dc1; dc2/;

where Wk D w.C1k; C2k/. In Appendix E we show that under
independence, ZW converges to a mean-zero normal random
variable with variance ¾ 2

W given in (E.1), which can also be
estimated using the bootstrap method. An analytic variance es-
timator can be easily obtained by modifying O¾ 2

p . Let O¾ 2
W denote

a consistent estimator ¾ 2
W . A weighted test statistic is of the

form QW D Z2
W = O¾ 2

W , which converges to Â2
1 as n goes to in� n-

ity. Note that when w.c1; c2/ ´ 1 for all .c1; c2/, QW reduces
to Qp .

The choice of a good weight function depends on the de-
pendence structure under the alternative hypothesis. Following

Anderson, Louis, Holm, and Harvald (1992), the bivariate sur-
vival function of .T1; T2/ can be expressed as

S.t1; t2/ D S1.t1/S2.t2/e¡A.t1;t2/;

where A.t1; t2/ measures the dependence structure. Note that
under independence, A.t1; t2/ D 0. (For other related associa-
tion measures, see Dabrowska 1988 and Prentice and Cai 1992.)
Our original objective is to choose a weight function that under
the local alternative H® :A.t1; t2/ D n¡1=2a.t1; t2/ C op.n¡1=2/

maximizes

jEf
P

k Wk.N00;k ¡ OE00;k/gj2

avarf
P

k Wk.N00;k ¡ OE00;k/g
:

Note that we consider only the local optimality condition here,
because the behavior of the statistic is more important in the
region near independence and also because the analysis can be
simpli� ed. Due to the complexity of the plugged-in NPMLE’s,
we derive the local optimal weight function,denoted by W¤, by
maximizing

jEf
P

k Wk.N00;k ¡ E00;k/gj2

avarf
P

k Wk.N00;k ¡ E00;k/g
:

We � nd that the local optimal weight function, w¤.t1; t2/, is
proportional to

ja.t1; t2/j
1 ¡ S1.t1/S2.t2/

:

The proof is given in Appendix F. Because w¤.t1; t2/ depends
on unknown quantities, we can replace it by its estimator, de-
noted by Ow¤.t1; t2/. Then the test statistic QW ¤ can be modi� ed
as Q OW ¤ D Z2

OW¤ = O¾ 2
OW ¤ . When Ow¤.t1; t2/ converges uniformly to

w¤.t1; t2/, the asymptotic distribution of Q OW ¤ is the same as
that of QW ¤ . Note that for � nite samples, Q OW ¤ may not have
the advantage of variance reduction, due to extra estimation of
the marginal functions.

We now calculate w¤.t1; t2/ for the Clayton and Frank mod-
els (Clayton 1978; Genest 1987). We use results in the simula-
tion analysis in Section 3.

Example 1: Clayton’s Family. The joint survival function is
given by

S.t1; t2/ D fS1.t1/1¡® C S2.t2/1¡® ¡ 1g1=.1¡®/ .® > 1/;

where ® is an association parameter related to Kendall’s tau (¿ )
such that ¿ D .® ¡ 1/=.® C 1/. Let ® D 1 C ±; it follows that

A.t1; t2/ D 1
® ¡ 1

log
©
S1.t1/®¡1 C S2.t2/®¡1

¡ S1.t1/®¡1S2.t2/®¡1ª

D ¡2± logfS1.t1/g logfS2.t2/g C op.±/:

Thus, for Clayton’s model, a.t1; t2/ / logfS1.t1/g logfS2.t2/g,
and hence

w¤.t1; t2/ D logfS1.t1/g logfS2.t2/g
1 ¡ S1.t1/S2.t2/

: (8)
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Example 2: Frank’s Family. The joint survival function is
given by

S.t1; t2/ D log®

»
1 C

.®S1.t1/ ¡ 1/.®S2.t2/ ¡ 1/

® ¡ 1

¼
.® > 0/:

Note that .T1; T2/ are positively associated when ® < 1, neg-
atively associated when ® > 1, and independent when ® ! 1.
Let ® D 1 C ±; it follows that

A.t1; t2/ D ¡ log
£
log®f1 C .®S1.t1/ ¡ 1/.®S2.t2/ ¡ 1/=.® ¡ 1/g

£
¡
S1.t1/S2.t2/

¢¤

D ±f1 ¡ S1.t1/gf1 ¡ S2.t2/g=2 C op.±/:

Thus a.t1; t2/ / f1¡S1.t1/gf1¡S2.t2/g, and hence, for Frank’s
family,

w¤.t1; t2/ D f1 ¡ S1.t1/gf1 ¡ S2.t2/g
1 ¡ S1.t1/S2.t2/

: (9)

3. SIMULATION ANALYSIS

We carried out series of simulations to examine � nite-sample
performance of the proposed tests. We generated bivariate fail-
ure times .T1; T2/ from the Clayton family using the algorithm

of Prentice and Cai (1992) and from the Frank family using
the algorithm of Genest (1987). We � rst generated C1 D C2

from uniform distributions. We measured test performance by
the empirical power, based on 4;000 runs, which is the rel-
ative frequency that the test rejected the null hypothesis at
the :05 nominal level. We investigated the power behavior un-
der the combination of 10 dependence levels with ¿ ranging
from 0 to :45, three prevalence levels (PL ¼ :2; :5; :8), and two
sample sizes (n D 200;400). The prevalence level is de� ned as
the expected proportion of observations that reports failure oc-
currence, that is, Pr.±1k D 1/ D Pr.±2k D 1/.

The test statistics (3) and (5) without bias adjustment pro-
duced incorrect type I errors, many of which even exceeded :1.
Because these are not reliable tests for small samples (i.e.,
n D 200; 400), the data are not shown here. The results of the
bias-adjusted tests Qb.a/ and Qp.a/ in (6) and (7) are given in
Tables 1 and 2.

Table 1 shows the results using the bootstrapvariance estima-
tor Qb.a/ . The type I errors for the unweighted tests are close
to the :05 nominal level. The weighted tests also have type I
errors close to :05 in most cases. Thus the test is valid for the
two chosen sample sizes. The power increases as the associ-

Table 1. Empirical Power of Qb(a) Based on 4,000 Replications

¿

T n PL W 0 .05 .10 .15 .20 .25 .30 .35 .40 .45

C 200 .8 U .059 .118 .275 .490 .685 .842 .932 .975 .996 .998
C .037 .127 .289 .490 .674 .813 .906 .958 .984 .995
F .053 .113 .287 .520 .721 .871 .942 .980 .997 .999

.5 U .057 .128 .300 .566 .797 .934 .985 .998 1.000 1.000
C .061 .100 .226 .459 .704 .858 .955 .988 .998 1.000
F .056 .104 .256 .514 .775 .913 .980 .996 .999 1.000

.2 U .056 .078 .142 .213 .338 .471 .650 .775 .891 .950
C .050 .046 .069 .104 .169 .259 .399 .540 .685 .808
F .051 .053 .084 .124 .205 .315 .463 .620 .762 .867

400 .8 U .061 .151 .421 .719 .912 .979 .998 1.000 1.000 1.000
C .040 .180 .435 .719 .905 .971 .994 .999 1.000 1.000
F .054 .154 .442 .753 .940 .985 .999 1.000 1.000 1.000

.5 U .054 .177 .519 .828 .974 .999 1.000 1.000 1.000 1.000
C .066 .139 .413 .746 .934 .991 .999 1.000 1.000 1.000
F .063 .149 .469 .804 .966 .997 1.000 1.000 1.000 1.000

.2 U .052 .092 .197 .342 .546 .739 .880 .961 .992 .997
C .051 .053 .087 .166 .328 .506 .691 .840 .941 .983
F .048 .057 .109 .203 .386 .575 .759 .895 .965 .993

F 200 .8 U .059 .093 .168 .293 .440 .599 .757 .869 .929 .973
C .037 .058 .091 .143 .193 .280 .389 .489 .584 .697
F .053 .075 .118 .216 .318 .463 .610 .749 .834 .923

.5 U .057 .127 .296 .550 .807 .935 .980 .998 1.000 1.000
C .061 .089 .173 .341 .542 .723 .871 .946 .986 .996
F .056 .099 .217 .429 .677 .850 .951 .987 .999 1.000

.2 U .056 .118 .248 .416 .636 .807 .928 .979 .994 .999
C .050 .055 .106 .209 .360 .550 .741 .850 .931 .972
F .051 .070 .137 .259 .439 .635 .819 .905 .967 .989

400 .8 U .061 .114 .261 .457 .685 .878 .954 .988 .997 1.000
C .040 .066 .119 .200 .316 .461 .616 .744 .850 .926
F .054 .089 .176 .335 .541 .748 .877 .951 .985 .999

.5 U .054 .175 .511 .825 .973 .998 1.000 1.000 1.000 1.000
C .066 .107 .296 .572 .820 .953 .991 .999 1.000 1.000
F .063 .122 .383 .708 .921 .989 .999 1.000 1.000 1.000

.2 U .052 .146 .387 .660 .883 .974 .997 1.000 1.000 1.000
C .051 .065 .188 .386 .676 .852 .951 .991 .998 1.000
F .048 .076 .228 .456 .741 .904 .978 .997 1.000 1.000

NOTE: The � rst column, “T,” lists the true distribution, “C” for the Clayton model and “F” for the Frank model. The second column, “n,” gives the sample size, and the third column, “PL,” gives the
prevalence level. The fourth column, “W,” gives the weights: “U” for the unweighted version, “C” for the optimal weight based on the Clayton model, and “F” for the optimal weight based on the Frank
model.
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ation, measured by ¿ , becomes greater. However, the weight
adjustment apparently does not improve the power. Recall that
the bootstrap estimation is conducted under the assumption of
independence,whereas the two failure times are correlated un-
der the alternative hypothesis. The variance estimator obtained
using the bootstrap method may be overestimated, and hence it
offsets the power gain.

Table 2 summarizes the results for Qp.a/ using the analytic
variance estimator. Although the power is generally higher than
that when using Qb.a/, the type I error seems less accurate in
some cases. The unweighted test has the correct type I error ex-
cept for the case of n D 200 and at an 80% prevalence rate. The
type I errors for the weighted tests become closer to the nomi-
nal level when the sample size or prevalence level increases. On
the other hand, the weighted tests perform poorly under small
sample sizes and low prevalence rates.

Now we explain how the prevalence level affects the � nite-
sample performance of the weighted tests. We � rst examine the
optimal weight for the Clayton model. Equation (8) suggests
assigning larger weights to the tail region of .T1; T2/. However,
when Pr.Tk · Ck/ .k D 1;2/ are small, most observations tend
to have large values of Sj .cj / .j D 1;2/, which are assigned
with lower weights. This would reduce the effective sample

size, and hence cause the asymptotics to kick in more slowly
than in the unweighted test. When assuming the Frank model,
(9) also suggests assigning larger weights to the tail region
of .T1; T2/. Hence when the prevalence level is low, the weight
adjustment also offsets the effective sample size. Nevertheless,
because the Frank weights are bounded between 0 and 1, the
test using Frank’s weight produces more accurate type I error
than that using Clayton’s weight when the correct model is as-
sumed. Generally, for the same sample size, the power is high-
est when the prevalence rate is around 50%. This is because the
effective sample size is larger when the observed failures and
survivals are more balanced.

Now we examine whether weight adjustment does indeed
improve the local power near independence. As intended from
the theoretical deduction, the weighted tests in most cases have
higher power than the unweighted tests when ¿ < :10. How-
ever, the theory does not ensure that the weights are optimal
when association is stronger. When the true level of associa-
tion is moderate or strong, model misspeci� cation may have a
substantially negative effect. For example when n D 200, the
prevalence rate is 80%, and the Frank model is misspeci� ed as
the Clayton model with ¿ D :3, the power of the weighted test
is only 49%, whereas that of the unweighted test is > 85%.

Table 2. Empirical Power of Qp(a) Based on 4,000 Replications

¿

T n PL W 0 .05 .10 .15 .20 .25 .30 .35 .40 .45

C 200 .8 U .073 .174 .356 .570 .756 .880 .949 .983 .997 .999
C .064 .197 .394 .605 .766 .877 .939 .978 .993 .998
F .072 .205 .441 .667 .835 .937 .975 .993 .999 1.000

.5 U .050 .170 .364 .640 .851 .953 .992 .999 1.000 1.000
C .069 .191 .372 .608 .810 .922 .979 .994 .999 1.000
F .064 .198 .401 .677 .876 .962 .995 .999 1.000 1.000

.2 U .041 .078 .142 .223 .348 .482 .654 .784 .893 .949
C .141 .196 .271 .353 .480 .578 .707 .795 .883 .929
F .110 .161 .249 .340 .477 .590 .732 .825 .914 .958

400 .8 U .057 .197 .475 .759 .925 .983 .998 1.000 1.000 1.000
C .053 .231 .519 .786 .939 .983 .997 1.000 1.000 1.000
F .059 .246 .579 .835 .967 .993 1.000 1.000 1.000 1.000

.5 U .048 .219 .572 .858 .981 1.000 1.000 1.000 1.000 1.000
C .060 .215 .533 .821 .960 .996 .999 1.000 1.000 1.000
F .053 .227 .602 .882 .982 .999 1.000 1.000 1.000 1.000

.2 U .039 .088 .203 .346 .560 .741 .885 .962 .993 .998
C .080 .141 .254 .370 .558 .719 .842 .924 .969 .990
F .068 .131 .249 .380 .584 .753 .874 .957 .988 .998

F 200 .8 U .073 .147 .267 .408 .573 .719 .848 .930 .968 .987
C .064 .104 .156 .222 .293 .392 .514 .615 .701 .799
F .072 .138 .248 .382 .514 .642 .782 .873 .925 .969

.5 U .050 .167 .359 .631 .859 .957 .988 .999 1.000 1.000
C .069 .161 .285 .480 .672 .820 .918 .966 .992 .998
F .064 .175 .332 .578 .797 .924 .975 .996 1.000 1.000

.2 U .041 .115 .251 .426 .642 .812 .930 .979 .993 .999
C .141 .236 .364 .510 .670 .797 .900 .938 .969 .987
F .110 .206 .350 .513 .691 .829 .928 .966 .988 .997

400 .8 U .057 .153 .338 .552 .758 .915 .973 .994 .998 1.000
C .053 .100 .170 .274 .411 .557 .706 .812 .896 .951
F .059 .141 .287 .488 .684 .859 .940 .981 .994 1.000

.5 U .048 .212 .566 .861 .978 .999 1.000 1.000 1.000 1.000
C .060 .162 .401 .674 .879 .967 .994 .999 1.000 1.000
F .053 .192 .503 .802 .953 .995 1.000 1.000 1.000 1.000

.2 U .039 .145 .394 .665 .887 .973 .997 1.000 1.000 1.000
C .080 .189 .405 .610 .821 .932 .977 .993 .998 1.000
F .068 .183 .417 .649 .864 .956 .990 .998 1.000 1.000

NOTE: The � rst column, “T,” lists the true distribution: “C” for the Clayton model and “F” for the Frank model. The second column, “n,” gives the sample size, and the third column, “PL,” gives the
prevalence level. The fourth column, “W,” gives the weights: “U” for the unweighted version, “C” for the optimal weight based on the Clayton model, and “F” for the optimal weight based on the Frank
model.
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The foregoing analysis indicates that the unweighted test
based on Qp.a/ is an accurate and safe choice. It does not rely
on any model assumption, and its performance in all cases is
satisfactory in terms of the power behavior. The weighted ver-
sion of Qp.a/ may be a consideration only if the sample size
is large and some prior information about the model and weak
association is available.

We also evaluated the tests proposed under unequal moni-
toring times. Speci� cally, we set C2 D C1 C :1. The results are
similar to those in Tables 1 and 2 and hence are omitted.

The effect of the censoring mechanism on the power of the
unweighted test is governedby the magnitudeof the conditional
covariance measure,
µ Z Z ©

Pr.T1 > c1; T2 > c2/ ¡ S1.c1/S2.c2/
ª
G.dc1; dc2/

¶2

:

Obviously, the power is affected by the underlying dependence
structure, the censoring pattern and their joint effect. To im-
prove the power by controlling the censoring scheme, the re-
searcher should sample more observations, which give a larger
value of j Pr.T1 > c1; T2 > c2/ ¡ S1.c1/S2.c2/j. However, this
suggestion may not be practical, because testing independence
is usually the � rst step of analysis.

4. DATA ANALYSIS

We applied the proposed methodology to analyze a commu-
nitybased study of cardiovascular diseases conducted from
1991 to 1993 in Taiwan. The study group had 6;314 partic-
ipants, 2;904 males and 3;410 females. The data comprised
measurements of the participants’ current age at the time of
study and the prevalence indicators of three diseases, dia-
betes mellitus, hypercholesterolemia, and hypertension. Let
.T1; T2; T3/ denote the onset age of diabetes mellitus, hyper-
cholesterolemia, and hypertension, and let C denote the sub-
ject’s age at the monitoring time. Therefore, the data are of
the form .C;±1; ±2; ±3/, where ±j D I .Tj · C/ .j D 1;2; 3/. (It
should be mentioned that we used this example only for illus-
trative purposes, because the prevalence of the three cardiovas-
cular diseases were determined via participant interview, health
examination, or previous medical history, rather than based on
formal medical diagnosis. For more detailed description of the
data, see Wang and Ding 2000).

Table 3 summarizes the results for testing pairwise inde-

Table 3. Pairwise Independent Tests for the Onset Ages of Patients
With Three Cardiovascular Diseases: Diabetes Mellitus (T1),

Hypercholesterolemia(T2), and Hypertension (T3)

Hypothesis Weight Value of Qb(a) Value of Qp(a)
(p value) (p value)

T1 ? T 2 Unweighted 26.3148 (.000) 34.4500 (.000)
C-optimal 11.8061 (.001) 18.0300 (.000)
F-optimal 12.1977 (.000) 18.5347 (.000)

T1 ? T 3 Unweighted 31.4113 (.000) 55.0494 (.000)
C-optimal 18.9685 (.000) 36.6759 (.000)
F-optimal 21.2697 (.000) 41.0896 (.000)

T2 ? T 3 Unweighted 5.8107 (.016) 6.0074 (.014)
C-optimal 3.9863 (.046) 4.4345 (.035)
F-optimal 4.2934 (.038) 4.7365 (.030)

NOTE: The second column indicates the assigned weights, namely unweighted, the optimal
weight based on the Clayton model (C-optimal) and the optimal weight based on Frank’s model
(F-optimal).

pendence of .T1; T2/, .T1; T3/, and .T2; T3/. The associations
between the onset ages of diabetes mellitus (T1) and the hy-
percholesterolemia and hypertension are both very strong with
p value close to 0. The association between T2 and T3 is signif-
icant at the :05 level, but not at the :01 level.

It is interesting to note that Wang and Ding (2000) assumed
that the pairwise dependence structures of the three diseases all
follow Clayton’s model and then estimated the associationpara-
meters. The estimated values of the correspondingKendall’s tau
between Ti and Tj , denoted by O¿ij , are O¿12 D :304, O¿13 D :128,
and O¿23 D :082. The corresponding 95% con� dence intervals
are .:210; :378/, .¡:005; :230/, and .¡:019; :165/.

5. CONCLUDING REMARKS

We have developed a nonparametric method to test indepen-
dence between two failure time variables when only current sta-
tus data are available.Because the true failure times .T1; T2/ are
never observed, this inference problem is harder than it � rst ap-
pears. Speci� cally, it is not easy to test independence between
.T1; T2/ without being affected by the distribution of .C1;C2/,
which are often correlated. The proposed testing proceduresuse
only statistics conditionalon the censoring times, to avoid mak-
ing assumptions on the censoring distribution. It is possible that
the proposed test correctly accepts H 0

0 while H0 is false, be-
cause current status data do not provide information to identify
such a condition.Nevertheless, as long as C1 and C2 are contin-
uous and their support is great enough to cover the distribution
of .T1; T2/, the foregoing situation is not likely.

Sometimes practitioners may want to apply nonparametric
methods, such as independence, rank, and permutation tests,
which are popular in cross-sectional analysis, to bivariate cur-
rent status data. Here we discuss why these methods are not
applicable. First, we discuss an independence test based on the
merged 2£ 2 table with entries N00, N01, N10, and N11 without
using the information of individual censoring times. Indepen-
dence between the columns and rows implies that
» Z

S1.c1/ dG1.c1/

¼ » Z
S2.c2/ dG2.c2/

¼

D
Z Z

S.c1; c2/G.dc1; dc2/;

where G.c1; c2/ is the distribution function of .C1;C2/ with
marginal distribution functions denoted by G1.c1/ and G2.c2/.
It is easy to see that the foregoing equation holds when not only
S1.c1/S2.c2/ D S.c1; c2/, but also G1.c1/G2.c2/ D G.c1; c2/.
Therefore, this test would be valid for testing independence
between T1 and T2 only under the unrealistic assumption that
C1 and C2 are also independent.

Now we discuss the validity of some permutation tests. Let
Gn.c1; c2/, G1n.c1/, and G2n.c2/ denote the corresponding
empirical distribution functions. One possible alternative is to
perform a permutation test by randomly pairing up .C1k; ±1k/

with .C2j ; ±2j /. Such a procedure that breaks up observations
of .C1;C2/ would make the resampled censoringdistribution to
be G1n.c1/G2n.c2/, which converges to G1.c1/G2.c2/ instead
of G.c1; c2/. Again, the resulting test would be valid only if C1

and C2 were also independent.A second possible mistake is to
run a permutation test by keeping .C1k;C2k/ together and only
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randomly pairing up ±1i with ±2j . Note that Pr.±1k D 1jC1k/ D
F1.C1k/, whereas Pr.±1i D 1jC1i/ D F1.C1i/. Hence they can-
not be exchanged under the null hypothesis. A third possibility
is running a nonparametric bootstrap without replacement; that
is, keep .C1k; ±1k;C2k; ±2k/ together and permute just among
the individuals.Although this is a valid permutation that retains
the distribution of the original data, it does not provide any in-
formation for the variation.

The main purpose of weight adjustment is to improve the
power when the true association is near independence. How-
ever, the weighted test requires a high prevalence rate and large
sample size to ensure asymptotic validity. It is also suscepti-
ble to model misspeci� cation and may not offer any advantages
when the association is high. Therefore, we suggest using the
unweighted test, which performs quite well in almost all of the
simulated cases.

The proposed methodology can be easily extended to adjust
for the effects of covariates. The assumption of strict indepen-
dence between the failure times and monitoring times may be
relaxed if their dependence can be accounted for by observed
covariate, say Z, such that Tj ? Cj jZ .j D 1;2/. Accordingly,
the 2 £ 2 tables should be constructed based on distinct ob-
served values of .C1;C2;Z/. If Z also affects the marginal
distributions, then the NPMLE’s OSj .cj / .j D 1;2/ should be
replaced by appropriate estimators of Sj .cj jZ/. A candidate
of such an estimator is the one proposed by van der Laan
and Robbins (1998) under the proportional hazard assumption.
Then the adjusted estimates of Sj .cj jZ/ .j D 1;2/ are used in
estimating the expected counts OEab in Qb.a/ or Qp.a/ .

In this article we concentrated on the bivariate case. The
tests can be easily generalized to multivariate data of di-
mensions higher than two. Using similar ideas, we can con-
struct 2 £ 2 £ ¢ ¢ ¢ £ 2 tables and use the test statistic Q D
.N00:::0 ¡ OE00:::0/2=n O¾ 2. The extension of the variance estima-
tor O¾ 2 to multivariate data is straightforward.

APPENDIX A: ASYMPTOTIC NORMALITY
OF n¡1=2(N00 ¡ Ê00)

Note that N00 ¡ OE00 D .N00 ¡ E00/ C .E00 ¡ OE00/. We can write

E00 D n

Z Z
S1.c1/S2.c2/Gn.dc1; dc2/;

and similar expressions apply to E10 , E01 and E00 . The � rst term,
.N00 ¡ E00/, can be written explicitly as

nX

kD1

©
I .T1k > C1k;T2k > C2k/ ¡ S1.C1k/S2.C2k/

ª
:

Hence, by the central limit theorem, n¡1=2.N00 ¡ E00/ converges in
distribution to N.¹;¾ 2

1 /, where ¹ D E[S.C1; C2/ ¡ S1.C1/S2.C2/]

and ¾ 2
1 is the unconditional variance of I .T1 > C1; T2 > C2/ ¡

S1.C1/S2.C2/. Under the null hypothesis,¹ D 0 and ¾ 2
1 DE[S1.C1/£

S2.C2/.1 ¡ S1.C1/S2.C2//].
Now we prove asymptotic normality of the second term, n¡1=2 £

.E00 ¡ OE00/. By uniform consistency of the marginal NPMLE’s and
asymptotic properties of an empirical process, it follows that

n¡1=2. OE00 ¡ E00/

D n¡1=2
nX

kD1

© OS1.C1k/ OS2.C2k/ ¡ S1.C1k/S2.C2k/
ª

D n1=2
Z Z © OS1.c1/ OS2.c2/ ¡ S1.c1/S2.c2/

ª
Gn.dc1; dc2/

D n1=2
Z Z

S2.c2/f OS1.c1/ ¡ S1.c1/gG.dc1; dc2/

C n1=2
Z Z

S1.c1/f OS2.c2/ ¡ S2.c2/gG.dc1; dc2/

C remn:

We show that the � rst two terms converge to a normal distribution,
where the remainder term, remn , is of order op.1/.

First, the remainder term is

remn D n1=2
Z Z

S2.c2/f OS1.c1/ ¡ S1.c1/g

£[ Gn.dc1; dc2/ ¡ G.dc1; dc2/]

C n1=2
Z Z

S1.c1/f OS2.c2/ ¡ S2.c2/g

£[ Gn.dc1; dc2/ ¡ G.dc1; dc2/]

C n1=2
Z Z

f OS1.c1/ ¡ S1.c1/gf OS2.c2/ ¡ S2.c2/g

£ Gn.dc1; dc2/

D I1n C I2n C I3n:

Because OSj .cj / ¡ Sj .cj /; j D 1; 2, are of order Op.n¡1=3/ (Groene-

boom and Wellner 1992), the last term I3n D Op.n1=2¡1=3¡1=3/ D
Op.n¡1=6/ D op .1/. To show that the � rst two terms are of order
op.1/, note that each integrand involves only one-dimensional em-

pirical survival function OSj . It is essentially the same proof as in the
univariate current status data case; we can apply, for example, argu-
ments similar to those of Huang and Wellner (1995, pp. 160–161). Let
S D fS : S is a one-dimensional survival function}, and consider the
class of functions F D fS1.x/.S.y/ ¡ S2.y// :S 2 Sg. First, uniform
entropy for S is bounded by K.1=²/¸; ¸ > 1, because it is contained
in the convex hull of the VC graph class of right half lines (Dudley
1987). Because for any S.1/;S.2/ 2 S ,
­­S1.x/

¡
S.1/.y/ ¡ S2.y/

¢
¡ S1.x/

¡
S.2/.y/ ¡ S2.y/

¢­­

·
­­S.1/.y/ ¡ S.2/.y/

­­;

the uniform entropy for F is also bounded by the bound for S ,
K.1=²/¸; ¸ > 1. Therefore, F is a G-Donsker class by Pollard’s the-
orem (e.g., Dudley 1987). Then we apply theorem 1.1 of Sheehy
and Wellner (1992) to ensure the uniform asymptotic equicontinu-
ity of the empirical process over F , which then implies that the � rst
term I1n D op.1/. The second term, I2n D op.1/, is proved the same
way by symmetry, and we have remn D op.1/.

Next, we show that the � rst two terms in (B.1) are asymptoti-
cally normal. Without loss of generality, assume that G.c1; c2/ is
differentiable with respect to both arguments and that g.c1; c2/ D
@2G.c1; c2/=@c1@c2. Denote

A1.x/ D
Z x

c1D0

µ Z 1

c2D0
S2.c2/g.c1; c2/ dc2

¶
dc1

D
Z x

c1D0
a1.c1/ dc1

and

A2.x/ D
Z x

c2D0

µ Z 1

c1D0
S1.c1/g.c1; c2/ dc1

¶
dc2

D
Z x

c2D0
a2.c2/ dc2:
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Performing integration by parts, it follows that

n¡1=2f OE00 ¡ E00g D ¡n1=2
Z 1

c1D0
A1.c1/ d. OS1 ¡ S1/.c1/

¡ n1=2
Z 1

c2D0
A2.c2/d. OS2 ¡ S2/.c2/ C op.1/

D ¡n1=2fº1. OS1/ ¡ º1.S1/g

¡ n1=2fº2. OS2/ ¡ º2.S2/g C op.1/;

where

º1.S1/ D
Z

A1.c/ dS1.c/; º2.S2/ D
Z

A2.c/ dS2.c/:

Notice that ºj .Sj / is a “smooth” functional of Sj satisfying the condi-
tions in theorem 5.1 of Huang and Wellner (1995). Therefore, the as-
ymptotic normalities of n1=2fºj . OSj / ¡ ºj .Sj /g .j D 1;2/, and hence

of n¡1=2. OE00 ¡ E00/, are established.

APPENDIX B: ESTIMATION OF ¾ 2

We have shown that n¡1=2.N00 ¡ OE00/ converges to N.0; ¾ 2/. To
estimate the asymptotic variance ¾ 2, note that ¾ 2 D ¾ 2

1 C ¾ 2
2 C 2¾12 ,

where ¾ 2
1 D avarfn¡1=2.N00 ¡E00/g, ¾ 2

2 D avarfn¡1=2.E00 ¡ OE00/g,
and ¾12 D acovfn¡1=2.N00 ¡ E00/;n¡1=2.E00 ¡ OE00/g. Because
¾ 2

1 D E[S1.C1/S2.C2/f1 ¡ S1.C1/S2.C2/g], it can be estimated con-
sistently by

O¾ 2
1 D n¡1

nX

kD1

OS1.C1k/ OS2.C2k/f1 ¡ OS1.C1k/ OS2.C2k/g: (B.1)

We show (in App. C) that

¾ 2
2 D

Z Z »
F1.c1/

a1.c1/

g1.c1/
C F2.c2/

a2.c2/

g2.c2/

¼

£ S1.c1/S2.c2/G.dc1; dc2/: (B.2)

We may estimate ¾ 2
2 analytically based on the foregoing expression.

But the estimator O¾ 2
2 is generally is very complicated. However, es-

timation can be simpli� ed if the relationship between C1 and C2 is
speci� ed. For example, in the most common case when the measure-
ments are taken from the same subjects, we have C1k D C2k D Ck

.k D 1; : : : ; n/. In such a case, the foregoing expression is simpli� ed
to

¾2
2 D

Z Z ©
S1.c1/ C S2.c2/ ¡ 2S1.Ck/S2.Ck /

ª

£ S1.c1/S2.c2/G.dc1; dc2/;

which can be estimated consistently by

Q¾ 2
2 D 1

n

nX

kD1

OS1.Ck/ OS2.Ck/

£
© OS1.Ck/ C OS2.Ck/ ¡ 2 OS1.Ck/ OS2.Ck/

ª
: (B.3)

Denote OE00;.¡k/ as the delete-one version of OE00 calculated after
deleting subject k from the sample. We show (in App. D) that ¾12
can be consistently estimated by

O¾12 D 1
n

nX

kD1

.1 ¡ ±1k/.1 ¡ ±2k/
¡ OE00;.¡k/ ¡ OE00

¢
: (B.4)

Hence the asymptotic variance ¾ 2 is estimated consistently by O¾ 2 D
O¾ 2
1 C O¾ 2

2 C 2 O¾12 , which is simpli� ed to (4) when C1 D C2 .

In � nite samples, the foregoing estimator tends to overestimate the
true variance.The bias comes from O¾ 2

1 and O¾ 2
2 given in (B.1) and (B.3).

To see this, we can write

¾ 2
1 ¡ O¾ 2

1 D ¡ 1

n

nX

iD1

© OS1.C1i/ OS2.C2i/ ¡ S1.C1i/S2.C2i/
ª

£
©
1 ¡ OS1.C1i/ OS2.C2i/ ¡ S1.C1i/S2.C2i/

ª

D ¡ 1

n

nX

iD1

© OS1.C1i/ OS2.C2i/ ¡ S1.C1i/S2.C2i/
ª

£
©
1 ¡ 2S1.C1i/S2.C2i/

ª

C 1
n

nX

iD1

© OS1.C1i/ OS2.C2i/ ¡ S1.C1i/S2.C2i/
ª2

D r1n C r2n:

The � rst term, r1n, asymptotically is of mean 0 and order Op.n¡1=2/.
The second term, r2n , is of smaller order, Op.n¡2=3/, but always pos-
itive. Similarly, O¾ 2

2 underestimates¾ 2
2 . Hence the � nite-sample adjust-

ments for bias in Section 2.3 is necessary. To save computing time,
the bias adjustment can be applied only to O¾ 2

1 and O¾ 2
2 rather than the

whole O¾ 2.

APPENDIX C: ESTIMATION OF
¾ 2

2 D avar (n¡1=2{E00 ¡ Ê00})

Applying theorem 5.1 of Huang and Wellner (1995), we can write

n¡1=2f OE00 ¡ E00g D n¡1=2
nX

kD1

µ
f±1k ¡ F1.C1k/g

a1.C1k/

g1.C1k/

C f±2k ¡ F2.C2k/g a2.C2k/

g2.C2k/

¶

C op.1/;

where g1.¢/ and g2.¢/ are the marginal density functions of C1 and C2.
It follows that

¾ 2
2 D var

µ
f±11 ¡ F1.C11/g

a1.C11/

g1.C11/
C f±21 ¡ F2.C21/g

a2.C21/

g2.C21/

¶

D
Z

F1.c1/S1.c1/
[a1.c1/]2

g1.c1/
dc1

C
Z

F2.c2/S2.c2/
[a2.c2/]2

g2.c2/
dc2

D
Z Z

F1.c1/S1.c1/
a1.c1/

g1.c1/
S2.c2/g.c1; c2/ dc1 dc2

C
Z Z

F2.c2/S2.c2/
a2.c2/

g2.c2/
S1.c1/g.c1; c2/ dc1 dc2

D
Z Z »

F1.c1/
a1.c1/

g1.c1/
C F2.c2/

a2.c2/

g2.c2/

¼

£ S1.c1/S2.c2/G.dc1; dc2/:

Based on this expression, we may estimate ¾ 2
2 analytically, as

follows. Estimate G.¢; ¢/ by the empirical distribution Gn.¢; ¢/; es-
timate the marginal functions by the corresponding NPMLE’s; and

estimate
aj .c/

gj .c/ .j D 1;2/ by some nonparametric methods. The last

step involves estimating a ratio of density functions nonparametrically.
We suggest applying the kernel method to estimate each component.
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Speci� cally,

Oa1.c1/

Og1.c1/
D

Pn
kD1

OS2.C2k/K f.C1k ¡ c1/=h1g
Pn

kD1 Kf.C1k ¡ c1/=h1g
;

where the kernel function, K.¢/, is a symmetric density function and h

is the bandwidth, controlling the size of the local neighborhood.Band-
width selection is often crucial for the kernel method. However, esti-

mation of
aj .c/

gj .c/ .j D 1; 2/ is not the ultimate goal, but is done only

to provide a consistent plugged-in estimator. Hence we do not have
to � nd the optimal kernel and bandwidth, which is a dif� cult topic by
itself, because there is no obvious optimal criterion here. For compu-
tation simplicity, we can take the linear kernel K.x/ D max.1 ¡jxj;0/

and bandwidth h1 D n¡1=5s1 (of the conventional optimal order),
where s1 denotes the sample standard deviation of the censoring times
C1k , k D 1; : : : ; n. Similarly, the bandwidth h2 D n¡1=5s2 . (For a thor-
ough discussion on kernel methods, see Wand and Jones 1995.)

Now a consistent estimator of ¾ 2
2 is given by

O¾ 2
2 D 1

n

nX

kD1

OS1.C1k/ OS2.C2k/

£

µ
OF1.C1k/

Pn
jD1

OS2.C2j /K f.C1j ¡ C1k/=h1g
Pn

jD1 Kf.C1j ¡ C1k/=h1g

C OF2.C2k/

Pn
jD1

OS1.C1j /Kf.C2j ¡ C2k/=h2g
Pn

jD1 Kf.C2j ¡ C2k/=h2g

¶
: (C.1)

The above estimator is still rather complicated, and we recommend
using simpler estimators in practice based on knowledge of the cen-
soring times. For example, when C1 D C2 D C, a1.c/

g1.c/
D S2.c/, and

a2.c/
g2.c/ D S1.c/. Therefore, ¾ 2

2 can be estimated consistently by

Q¾ 2
2 D 1

n

nX

kD1

OS1.Ck/ OS2.Ck/

£
© OF1.Ck/ OS2.Ck/ C OF2.Ck/ OS1.Ck/

ª

D 1
n

nX

kD1

OS1.Ck/ OS2.Ck/

£
© OS1.Ck / C OS2.Ck/ ¡ 2 OS1.Ck / OS2.Ck/

ª
; (C.2)

which reduces to the form in (B.3).
In another example, if C1 ? C2 , then a1.c/

g1.c/
D EG[S2] and a2.c/

g2.c/
D

EG[S1]. In such a case, ¾ 2
2 can be estimated consistently by

L¾ 2
2 D 1

n

nX

kD1

OS1.C1k/ OS2.C1k/f OF1.C1k/ NS2 C OF2.C2k/ NS1g; (C.3)

where

NSi D 1
n

nX

j D1

OSi.Cij /:

APPENDIX D: ESTIMATION OF
¾ 12 D n¡1 acov (N00 ¡ E00, E00 ¡ Ê00)

Explicit expressionof ¾12 is dif� cult to obtain due to the complexity
of the plugged-in NPMLE’s. Besides the bootstrap approach, we pro-
vide another estimationmethod using the delete-one jackknifemethod.
Conditioning on the monitoring times, cov.N00 ¡ E00;E00/ D 0, and

hence cov.N00 ¡ E00;E00 ¡ OE00/ D cov.N00 ¡ E00;¡ OE00/. Note
that

cov.N00 ¡ E00; ¡ OE00/

D ncov
¡
f1 ¡ ±1kgf1 ¡ ±2kg ¡ S1.C1k/S2.C2k/; ¡ OE00

¢
:

Let OE00;.¡k/ denote the delete-one version of OE00 calculated after
deleting subject k from the sample. It is obvious that cov.f¡±1kg £
f1 ¡ ±2kg ¡ S1.C1k/S2.C2k/; OE00;.¡k// D 0. Then it follows that

cov.N00 ¡ E00; E00 ¡ OE00/

D ncov
¡
f1 ¡ ±1kgf1 ¡ ±2kg ¡ S1.C1k/S2.C2k/; OE00;.¡k/ ¡ OE00

¢
:

Because cov.S1.C1k/S2.C2k/; OE00;.¡k/ ¡ OE00/ D op.1/, it follows
that

cov.N00 ¡ E00; E00 ¡ OE00/

D ncov
¡
f1 ¡ ±1kgf1 ¡ ±2kg; OE00;.¡k/ ¡ OE00

¢
C op.n/:

Therefore, ¾12 can be consistently estimated by the estimator in (B.4).

APPENDIX E: ASYMPTOTIC PROPERTIES OF Z W
UNDER INDEPENDENCE

We can write

ZW D n1=2
Z

c1

Z

c2

w.c1; c2/fN00.c1; c2/ ¡ S1.c1/S2.c2/g

£ Gn.dc1; dc2/

C n1=2
Z

c1

Z

c2

w.c1; c2/
©
S1.c1/S2.c2/ ¡ OS1.c1/ OS2.c2/

ª

£ G.dc1; dc2/ C op.1/

D r1n C r2n C op.1/:

The arguments in Appendix A can be applied to show asymptotic nor-
mality of r1n and r2n. Therefore, ZW converges in distribution to a
normal random variable with mean 0 and variance

¾ 2
W D ¾ 2

W1 C 2¾W12 C ¾ 2
W 2: (E.1)

Here ¾ 2
W 1, ¾ 2

W 2, and ¾W12 are the weighted versions of ¾ 2
1 , ¾ 2

2 ,
and ¾12 , where

¾ 2
W 1 D

Z

c1

Z

c2

w2.c1; c2/S1.c1/S2.c2/

£f 1 ¡ S1.c1/S2.c2/gG.dc1; dc2/

and

¾ 2
W 2 D

Z Z
w2.c1; c2/

»
F1.c1/

a1.c1/

g1.c1/
C F2.c2/

a2.c2/

g2.c2/

¼

£ S1.c1/S2.c2/G.dc1; dc2/:

Again, we do not have a simple analytical expression for ¾W12; but we
can estimate it similarly to O¾12 in (B.4) by

O¾W12 D 1
n

nX

kD1

W 2.C1k; C2k/.1 ¡ ±1k/.1 ¡ ±2k/
¡ OE00;.¡k/ ¡ OE00

¢
:

The other two components of ¾ 2
W 1 and ¾ 2

W 2 can be estimated by sim-

ilarly modifying the estimators of ¾ 2
1 and ¾ 2

2 in (B.1) and (B.3).
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APPENDIX F: DERIVATION OF THE LOCAL
OPTIMAL WEIGHT FUNCTION

Let QZW D n¡1=2 P
k Wk.N00;k ¡E00;k/. Under the alternativehy-

potheses H® :A.t1; t2/ D n¡1=2a.t1; t2/ C op.n¡1=2/, QZW converges
in distribution to a normal distribution with mean

n1=2
Z Z

w.c1; c2/S1.c1/S2.c2/
©
e¡A.c1;c2/ ¡ 1

ª
G.dc1; dc2/

D ¡
Z Z

w.c1; c2/S1.c1/S2.c2/a.c1; c2/G.dc1; dc2/

C op.1/

and varianceZ Z
w2.c1; c2/S1.c1/S2.c2/e¡A.c1;c2/

£
©
1 ¡ S1.c1/S2.c2/e¡A.c1;c2/

ª
G.dc1; dc2/

D
Z Z

w2.dc1; dc2/S1.dc1/S2.dc2/

£f 1 ¡ S1.c1/S2.c2/gG.dc1; dc2/ C op.1/:

Hence the local optimal weight function maximizes

f
RR

w.c1; c2/S1.c1/S2.c2/a.c1; c2/G.dc1; dc2/g2
RR

w2.c1; c2/S1.c1/S2.c2/f1 ¡ S1.c1/S2.c2/gG.dc1; dc2/
:

By the Cauchy–Schwartz inequality, the optimal weight function
w¤.t1; t2/ is proportional to

ja.t1; t2/j
1 ¡ S1.t1/S2.t2/

:

[Received May 2002. Revised July 2003.]
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