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Summary. Semicompeting risks data are commonly seen in biomedical applications in which
a terminal event censors a non-terminal event. Possible dependent censoring complicates sta-
tistical analysis. We consider regression analysis based on a non-terminal event, say disease
progression, which is subject to censoring by death.The methodology proposed is developed for
discrete covariates under two types of assumption. First, separate copula models are assumed
for each covariate group and then a flexible regression model is imposed on the progression
time which is of major interest. Model checking procedures are also proposed to help to choose
a best-fitted model. Under a two-sample setting, Lin and co-workers proposed a competing
method which requires an additional marginal assumption on the terminal event and implicitly
assumes that the dependence structures in the two groups are the same. Using simulations, we
compare the two approaches on the basis of their finite sample performances and robustness
properties under model misspecification. The method proposed is applied to a bone marrow
transplant data set.

Keywords: Copula model; Dependent censoring; Model selection; Multiple events data;
Transformation model

1. Introduction

Many medical studies involve analysis of multiple end points. Such events may be classified into
two types, namely terminal and non-terminal. Death is an example of terminal events in the
sense that its occurrence precludes the development of others. Examples of non-terminal events,
which are subject to censoring by a terminal event, include disease progression or recurrence. If
the relationship between the two events is completely unspecified, the marginal distribution of
the time to a non-terminal event is not identifiable owing to possible dependent censoring.

Let X be the time to the non-terminal event of major interest, which is usually a status of
disease progression, and let Y be the time to death and C be the time to the external cen-
soring event. Observed variables consist of X̃ = X ∧ Y ∧ C, Ỹ = Y ∧ C, δx = I.X � Y ∧ C/ and
δy = I.Y �C/. Such a data structure was called semicompeting risks data by Fine et al. (2001).
There has been increasing research attention in developing statistical methods for analysing
semicompeting risks data. For example, investigation of the degree of association between the
two events has been pursued by Day et al. (1997) and Fine et al. (2001) in which the Clayton
model is assumed and Wang (2003) for a class of copula models.
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In this paper, we consider regression analysis based on progression time X. Because of depen-
dent censoring, the marginal distribution of X is not identifiable non-parametrically. Under a
two-sample setting, Lin et al. (1996) and Chang (2000) modelled the marginal effects on both
X and Y but did not specify their joint distribution. Specifically Lin et al. (1996) considered a
bivariate location–shift model and Chang (2000) assumed a bivariate accelerated failure time
model. This research direction has been further extended to general regression settings in which
the non-terminal event is generalized to be recurrent events (Ghosh and Lin, 2003; Lin and
Ying, 2003) whereas death still serves as a terminal event. The technique of artificial censoring
is used in these references to handle the problem of dependent censoring. Despite being theo-
retically appealing, the efficiency of the resulting estimator is affected by the degree of artificial
censoring. Furthermore, these methods implicitly assume that the dependence structures for the
two groups, or for all the levels of covariates, are the same. In other words, they do not account
for the situation that covariates may affect the dependence structure.

Here we adopt a different approach to assessing the covariate effect on progression time under
dependent censoring. Without making any assumptions on the marginal distribution of Y , we
assume that

h.X/=−Z′θ + ", .1/

where Z is the p×1 discrete covariate vector, θ is the p×1 parameter vector, h.t/ is a monotonic
increasing function and " is the error term. The parameter θ which measures the covariate effect
on X is of major interest. Model (1) can be classified into two classes. One class assumes that
h.t/ is a known monotone function but leaves the distribution of " to be unknown. For example,
when h.t/= t, the model becomes a location–shift model; when h.t/= log.t/, the model follows
an accelerated failure time model. The other class assumes that h.t/ is unknown but the distri-
bution of " is completely specified. Examples of the second class include the Cox proportional
hazard model with " being the Gumbel extreme value distribution and the proportional odds
model with " being the standard logistic distribution.

To handle the problem of non-identifiability, we assume that .X, Y/ jointly follow an Archi-
medean copula (AC) model in the upper wedge P ={.x, y/ : 0 <x�y<∞} such that

Pr.X�x, Y �y/=φ−1
α [φα{Pr.X�x/}+φα{Pr.Y �y/}],

whereφ : [0, 1]→ [0, ∞] has two continuous derivatives on (0, 1) and satisfiesφ.1/=0, @φ.t/=@t<0
and @2φ.t/=@t2 > 0 for all 0 < t < 1. Examples of AC models include the Clayton (1978) model
φα.v/= .v−α −1/=α .α> 0/, the Frank model (1979) φα.v/= log{.1−α/=.1−αv/} .α> 0/, the
Gumbel (1960) model φα.v/ = {− log.v/}α+1 .α > 0/ and the log-copula model φα.v/ = {1 −
log.v/=αγ}α+1 − 1 .α, γ > 0/. In the presence of discrete covariates, we assume separate AC
models for each covariate group to account for the possibility that the dependence structures
for different groups are different. To simplify the notation, let Fz.x, y/=Pr.X�x, Y �y|Z=z/,
Fx,z.x/=Pr.X�x|Z = z/ and Fy,z.y/=Pr.Y �y|Z = z/. We assume that

Fz.x, y/=φ−1
z,αz

[φz,αz{Fx,z.x/}+φz,αz{Fy,z.y/}]: .2/

Note that, for different groups, we allow not only a different association parameter αz but also
different forms of φz,αz .·/.

The inference method proposed for estimating θ under models (1) and (2) is discussed in
Section 2. In Section 3, we propose model checking procedures to verify the copula assump-
tion in model (2) and to select an appropriate regression model in equation (1). Simulation
results and data analysis are presented in Section 4. Section 5 contains some concluding remarks.
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2. A two-stage inference procedure

Let .Xi, Yi/ .i = 1, . . . , n/ be independent realizations of .X, Y/ which follow model (2) in the
upper wedge. The p-dimensional covariate vector for subject i is denoted as Zi, which takes
discrete values, say z1, . . . , zK. Denote nk =Σn

i=1I.Zi = zk/ as the number of observations for
the kth subsample and n = ΣK

k=1nk. Let Ci .i = 1, . . . , n/ be independent and identically dis-
tributed realizations of the external censoring variable C which is assumed to be independent
of .X, Y/. We observe semicompeting risks data {.X̃i, δxi, Ỹ i, δyi, Zi/ .i = 1, 2, . . . , n/}, where
X̃i = Xi ∧ Yi ∧ Ci, Ỹ i = Yi ∧ Ci, δx,i = I.Xi � Yi ∧ Ci/ and δy,i = I.Yi � Ci/. The inference proce-
dure proposed contains two steps. The parameters in model (2), namely αz, Fy,z.y/, Fz.x, y/ and
Fx,z.x/, are estimated in the first stage. In the second stage, the proposed estimating function of
θ is constructed on the basis of the estimator of Fx,z.x/.

2.1. First-stage: estimating nuisance parameters
First we obtain the estimators of Fz.x, y/, Fy,z.y/, Fx,z.x/, G.y/=Pr.C �y/ and αz, which are
denoted as F̂z.x, y/, F̂y,z.y/, F̂x,z.x/, Ĝ.y/ and α̂z respectively, by applying existing methods in
the literature to the subsample with Z = z.

For x � y, it follows that Fz.x, y/ = Pr.X̃ � x, Ỹ � y|Z = z/=G.y/. Hence, using the plug-in
approach, Fz.x, y/ can be estimated by

F̂z.x, y/= P̂r.X̃�x, Ỹ �y|Z = z/=Ĝ.y/=
n∑

i=1
I.X̃i �x, Ỹ i �y, Zi = z/

/
nz Ĝ.y/, .3/

where

Ĝ.y/= ∏
u<y

{
1−

n∑
i=1

I.Ỹ i =u, δyi =0/
/ n∑

i=1
I.Ỹ i �u/

}
:

This estimator is based on the assumption that covariates Z do not affect the distribution of
censoring variable C. In the situation that the distribution of C depends on discrete covariate
Z, Ĝ.y/ can be modified by the corresponding Kaplan–Meier estimator Ĝz.y/ which uses only
those data points with Zi = z. Similarly the estimator of Fy,z.y/ is given by

F̂y,z.y/=
n∑

i=1
I.Ỹ i �y, Zi = z/

/
nz Ĝ.y/: .4/

There are several estimators of αz based on semicompeting risks data. Assuming the Clayton
model in the upper wedge, the estimating function that was proposed by Day et al. (1997) was
constructed on the basis of 2×2 tables and that proposed by Fine et al. (2001) utilized the con-
cordant information for paired observations. Wang (2003) generalized the former approach to
general AC models. In the absence of covariates, her estimating function of α can be expressed
as

L.α, η̂/=n−1
∫ ∫

.x,y/∈P
w.x, y/{N11.dx, dy/− Ẽ11.dx, dy;α, η̂/}, .5/

where w.x, y/ is a weight function,

Ẽ11.dx, dy;α, η/= θα,η.x, y/ N10.dx, y/ N01.x, dy/

θα,η.x, y/ N10.dx, y/+R.x, y/−N10.dx, y/
,

N11.dx, dy/=
n∑

i=1
I.X̃i =x, Ỹ i =y, δxi =1, δyi =1/,

N10.dx, y/=
n∑

i=1
I.X̃i =x, δxi =1, Ỹ i �y/,



6 J.-J. Hsieh, W. Wang and A. A. Ding

N01.x, dy/=
n∑

i=1
I.X̃i �x, Ỹ i =y, δyi =1/,

R.x, y/=
n∑

i=1
I.X̃i �x, Ỹ i �y/

and θα,η.x, y/= θ̃α{F.x, y/} with

θ̃α.v/=−v
@2φα.v/=@v2

@φα.v/=@v
=−v

φ′′
α.v/

φ′
α.v/

and η=F.x, y/ can be estimated by η̂= F̂ .x, y/ by using formula (3) without further partitioning
by Z.

Here we modify Wang’s method to estimate αz by using only data points with Zi =z. Then, on
the basis of model (2), we can derive Fx,z.x/ in terms of φz,αz .·/, Fz.x, y/ and Fy,z.y/. Fine et al.
(2001) suggested to consider the relationship on the diagonal line y=x and, by straightforward
calculation, we obtain

Fx,z.x/=φ−1
z,αz

[φz,αz{Fz.x, x/}−φz,αz{Fy,z.x/}]=Hzk
{Fz.x, x/, Fy,z.x/, αz}:

The marginal function Fx,z.x/ can be estimated by

F̂x,z.x/=φ−1
z,α̂z

[φz,α̂z{F̂z.x, x/}−φz,α̂z{F̂y,z.x/}]=Hzk
{F̂z.x, x/, F̂y,z.x/, α̂z}: .6/

2.2. Second stage: estimating the regression parameter
The proposed estimating equation of θ is motivated by the following two-sample test statistic
with Z=0, 1. Specifically to test Fx,0.t/=Fx,1.t/ for every t within the range of the data, we can
use

UT =√(n0n1

n

)∫
W.x/

{
F̂x,0.x/− F̂x,1.x/

}
dx, .7/

where W.x/ is a weight function.
Now we modify the test statistic UT in equation (7) to construct an estimating equation for

one-dimensional θ with Z = 0, 1. Let θ0 be the true value of θ. Model (1) induces a functional
transformation ξθ.·/ such that ξθ0.Fx,0/=Fx,1. When h.·/ is known but the distribution of " is
unknown, ξθ.F/.t/=F [h−1{h.t/+θ}]; when h.·/ is unknown but the distribution of " is known,
ξθ.F/.t/=F"[F−1

" {F.t/}+θ], where F".t/=Pr."� t/ denotes the survival function of ". Now we
can define a function g.t, θ/ such that

g.t, θ/= ξθ.Fx,0/.t/−Fx,1.t/:

Then g.t, θ0/=0 for all t. Since√(n0n1

n

)∫
W.x/ g.x, θ0/ dx=0,

we can then estimate θ by solving the corresponding estimating equation

U.θ/=√(n0n1

n

)∫
W.x/ ĝ.x, θ/ dx=0,

where ĝ.t, θ/= ξθ.F̂x,0/.t/− F̂x,1.t/.
The above idea can be modified to account for the situation that Z contains multiple cova-

riates but all of them have finite discrete values. In such a case, let {zk, k = 1, 2, . . . , K} denote
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the set of all possible Z-values. Now zk, θ and θ0 are p × 1 vectors. When model (1) is true,
it follows that ξ.zj−zk/Tθ0

.Fx,zk
/ = Fx,zj . Here and throughout the paper, aT denotes the trans-

pose of a. Define gkj.t, θ/=ξzT
kjθ

.Fx,zk
/.t/−Fx,zj .t/ and ĝkj.t, θ/=ξzT

kjθ
.F̂x,zk

/.t/− F̂x,zj .t/, where
zkj = zj − zk and F̂x,zk

is the estimator (6) based on the subsample with Z = zk. The estimating
function then becomes

U.θ/= ∑
k<j

w0.zT
kjθ/zkj

√( nknj

nk +nj

)∫ tkj

0
Wkj.t/ ĝkj.t, θ/ dt .8/

where w0.·/ and Wkj.·/ are the weight functions, and tkj is the largest value of X̃ in the pooled
subsample with Z=zk or Z=zj. The proposed estimator of θ is the solution to U.θ/=0, which
is denoted as θ̂.

Asymptotic properties of θ̂ which solves U.θ/=0 are given in the following theorem.

Theorem 1. Assume that models (1) and (2) hold. Under the regularity conditions that are
stated in Appendix A, θ̂ is a consistent estimator of θ0 and n1=2.θ̂ − θ0/ is asymptotically
normal with mean 0, where θ0 is the true value.

A sketch of the proof is outlined in Appendix B. More detailed discussions are provided in
Hsieh et al. (2007). Since it is not easy to estimate the asymptotic variance of θ̂ by an analytic
formula, we suggest the use of a bootstrap or a jackknife method to estimate its variance.

In practice, the weight function may also be estimated. Replacing Wkj.t/ in equation (8) with
Ŵkj.t/, we have the estimating function

Û.θ/= ∑
k<j

w0.zT
kjθ/zkj

√( nknj

nk +nj

)∫ tkj

0
Ŵkj.t/ ĝkj.t, θ/ dt:

The Gehan-type weights are often used (page 230 of Klein and Moeschberger (2003)); these can
be written as

Ŵkj.x/= .nk +nj/ Ĝzk
.x/ Ĝzj .x/

nk Ĝzk
.x/+nj Ĝzj .x/

,

where Ĝzk
.x/ is the Kaplan–Meier estimator of Gzk

.x/=Pr.C �x|Z = zk/. Note that Ŵkj.x/ is
an estimator of

Wkj.x/= .ck + cj/ Gzk
.x/ Gzj .x/

ck Gzk
.x/+ cj Gzj .x/

,

where ck and cj are the constants that are defined in the first regularity condition (a) that is
listed in Appendix A. Let θ̃ solve Û.θ/=0. Its asymptotic properties are stated in the following
theorem. In Appendix C, we present a sketch of the proof and, for the details, refer to Hsieh
et al. (2007).

Theorem 2. If Ŵkj.t/ uniformly strongly converges to Wkj.t/ then, under the conditions for
theorem 1, the solution to the estimating equation Û.θ/=0 is also asymptotically normal, i.e.
let θ̃ denote the solution to Û.θ/=0; then n1=2.θ̃−θ0/ weakly converges to a mean 0 normal
random variable, where θ0 is the true value.

For computation, we may use the fact that F̂x,0.t/ and F̂x,1.t/ are piecewise constant functions.
Let t.1/ � . . .� t.n/ be the observed ordered times of X̃ in the pooled sample and set t.0/ =0. Then
F̂x,0.t/ and F̂x,1.t/ are constants on the time intervals .t.i−1/, t.i/]. Usually, the estimated weight
functions such as the Gehan-type weights can also be taken to be piecewise constant functions
between t.i−1/ and t.i/ which would enable simplification for computation. For example, with
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piecewise constant weight function Ŵ.t/, the quantity correponding to UT in equation (7) can
be rewritten as

ÛT =√(n0n1

n

) n∑
i=1

Ŵ.t.i//.t.i/ − t.i−1//{F̂x,0.t.i//− F̂x,1.t.i//}: .9/

For illustration, we now derive the estimating equations under a two-sample setting for
selected examples.

2.2.1. Example 1: Cox proportional hazard model
When " has the extreme value distribution, model (1) becomes the Cox proportional hazard
model. Then F".t/= exp{− exp.t/} and ξθ.F/=F exp.θ/. When θ equals its true value θ0, it fol-
lows that

Fx,1.x/=Fx,0.x/exp.θ0/:

Therefore g.t, θ/=Fx,0.t/exp.θ/ −Fx,1.t/, and the estimating equation is

Û.θ/=√(n0n1

n

)∫ t.n/

0
Ŵ.t/{F̂x,0.t/exp.θ/ − F̂x,1.t/} dt =0:

Under the piecewise constant weight function, the resulting estimating equation becomes

Û.θ/=√(n0n1

n

) n∑
i=1

Ŵ.t.i//.t.i/ − t.i−1//{F̂x,0.t.i//
exp.θ/ − F̂x,1.t.i//}=0:

2.2.2. Example 2: the proportional odds model
When " is the standard logistic distribution, model (1) becomes the proportional odds model,
where F".t/ = 1={1+ exp.t/} and ξθ.F/ = F={exp.θ/−F exp.θ/+F}. When θ equals its true
value θ0, it follows that

Fx,1.t/= Fx,0.t/

exp.θ0/−Fx,0.t/exp.θ0/+Fx,0.t/
,

and

g.t, θ/= Fx,0.t/

exp.θ/−Fx,0.t/exp.θ/+Fx,0.t/
−Fx,1.t/:

So the estimating equation is

Û.θ/=√(n0n1

n

)∫ t.n/

0
Ŵ.t/

{
F̂x,0.t/

exp.θ/− F̂x,0.t/exp.θ/+ F̂x,0.t/
− F̂x,1.t/

}
dt =0:

Under the piecewise constant weight function, the resulting estimating equation becomes

Û.θ/=√(n0n1

n

) n∑
i=1

Ŵ.t.i//.t.i/ − t.i−1//

{
F̂x,0.t.i//

exp.θ/− F̂x,0.t.i//exp.θ/+ F̂x,0.t.i//
− F̂x,1.t.i//

}
=0:
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2.2.3. Example 3: the accelerated failure time model
When h.t/ = log.t/, model (1) becomes the accelerated failure time model. Now ξθ.F/.t/ =
F{exp.θ/t}. When θ equals its true value θ0, it follows that

Fx,1.t/=Fx,0{exp.θ0/t},

and

g.t, θ/=Fx,0{exp.θ0/t}−Fx,1.t/:

So the estimating equation is

Û.θ/=√(n0n1

n

)∫
Ŵ.t/[F̂x,0{exp.θ/t}− F̂x,1.t/] dt =0,

where F̂x,0{exp.θ/t}= P̂r{X� exp.θ/t|Z =0}= P̂r{exp.−θ/X� t|Z =0}. Note that the discon-
tinuous points of F̂x,0{exp.θ/t} are different from those of F̂x,0.t/. Denote F̂

Å
x,0.t/ as the estima-

tor F̂x,0.t/ computed on the basis of the transformed data

{exp.−θ/X̃i, exp.−θ/Ỹ i, δxi, δyi}
for i with Zi =0. Let t̃.1/ � . . .� t̃.n/ be the order times of the pooled sample

{exp.−θ/X̃i I.Zi =0/+ X̃i I.Zi =1/ .i=1, . . . , n/}:

If the weight function is piecewise constant and takes jumps at {t̃.j/, j =1, . . . , n}, the resulting
estimating function becomes

Û.θ/=√(n0n1

n

) n∑
i=1

Ŵ.t̃.i//.t̃.i/ − t̃.i−1//{F̂
Å
x,0.t̃.i//− F̂x,1.t̃.i//}=0:

3. Model selection

The procedure proposed is developed on the basis of two assumptions: the dependence structure
of an AC model characterized by φz,αz .·/ in model (2) and the regression model in expression
(1). By specifying the dependence relationship between X and Y for each value of Z, we can
avoid making unnecessary assumptions about the covariate effect on Y as in Lin et al. (1996).
Now we discuss how to justify the assumptions imposed.

3.1. Selection of a copula model
We first consider how to check whether a copula model φz,αz .·/ fits the data at hand for each
covariate group. Without loss of generality and to simplify the presentation, the discussions here
are based on a homogeneous sample {.X̃i, δxi, Ỹ i, δyi/ .i=1, 2, . . . , n/} such that .X, Y/ follows
an AC model

F.x, y/=Cα{Fx.x/, Fy.y/}=φ−1
α [φα{Fx.x/}+φα{Fy.y/}]: .10/

We briefly summarize our ideas. Consider the function F11.t1, t2/=Pr.X� t1, Y � t2|δx =1, δy =
1/ which is identifiable non-parametrically in the upper wedge {.t1, t2/ : 0<t1 � t2 <∞}. By com-
paring the non-parametric estimator of F11.t1, t2/ and its model-based estimator for F11.t1, t2/

on the basis of some distance measure, we can find the most plausible model which is the model
that yields the smallest distance among the candidates. Furthermore a formal goodness-of-fit test
can be constructed if the distribution of the distance measure under the null hypothesis can be
derived. Since analytic derivations are complicated, we suggest using the bootstrap resampling
method to obtain the cut-off value in the test.
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The non-parametric estimator, which is denoted as F̂
11

.t1, t2/ .t1 � t2/, is given by
n∑

i=1
I.X̃i � t1, Ỹ i � t2, δxi =1, δyi =1/

/ n∑
i=1

I.δxi =1, δyi =1/:

Assume that there are K model candidates C.k/
α {Fx.x/, Fy.y/} .k = 1, 2, . . . , K/, each of which

can be characterized by φ.k/
α . Note that the definition of α depends on the model chosen. For

an AC model that is indexed by φ.k/
α , the model-based estimator, which is denoted as F̃

11
k .t1, t2/,

can be computed over the region {t1 � t2} as follows:

F̃
11
k .t1, t2/=

∫ ∞

y=t2

∫ y

x=t1

F̃ k.dx, dy/ Ĝ.y/∫ ∞

y=0

∫ y

x=0
F̃ k.dx, dy/ Ĝ.y/

,

where F̃ k.dx, dy/= F̃ k.x, y/− F̃ k.x+dx, y/− F̃ k.x, y +dy/+ F̃ k.x+dx, y +dy/ and F̃ k.x, y/=
φ

.k/
α̂

−1
[φ.k/

α̂ {F̂x.x/}+φ
.k/
α̂ {F̂y.y/}]. To verify whether a copula model φ.k/

α fits the data, we can per-
form a formal testing procedure as follows. Consider testing H0 :φα =φ.k/

α versus Ha :φα �=φ.k/
α .

Define

Dk = sup
t1�t2

|F̂11
.t1, t2/− F̃

11
k .t1, t2/|: .11/

We can reject H0 if Dk > ck, where ck is the critical value satisfying Pr.Dk > ck|H0/ = γ, the
prespecified type I error rate.

Because the distribution of Dk is difficult to derive analytically, we suggest using bootstrap
resampling methods to obtain the cut-off value, p-value and power. Here we briefly describe the
procedure. A bootstrap sample under model φ.k/

α can be generated as follows. Recall that, given
the original data, we have obtained Ĝ.c/, F̂y.y/ and F̂x.x/ under the assumption of model φ.k/

α .
Then generate .UÅ

i , VÅ
i /∼ copula model k with UÅ

i ∼U.0, 1/ and VÅ
i ∼U.0, 1/. Then set XÅ

i =
s if F̂x.s+/ < 1 − UÅ

i � F̂x.s/, YÅ
i = t if F̂y.t+/ < 1 − VÅ

i � F̂y.t/ and CÅ
i ∼ Ĝ.c/. Given .XÅ

i ,
YÅ

i , CÅ
i / .i=1, . . . , n/, we can construct a bootstrap sample {.X̃

Å
i , δÅ

xi, Ỹ
Å
i , δÅ

yi/ .i=1, 2, . . . , n/},
where X̃

Å
i = XÅ

i ∧ YÅ
i ∧ CÅ

i , Ỹ
Å
i = YÅ

i ∧ CÅ
i , δÅ

xi = I.XÅ
i � YÅ

i ∧ CÅ
i / and δÅ

yi = I.YÅ
i � C*

i /. With a
bootstrapped sample, we can compute the corresponding values of Dk. Repeating the boot-
strapping procedure many times, the distribution of Dk can be approximated by the empirical
counterparts from the bootstrapped samples.

The above tests will reject the null hypothesis if the data obviously violate the copula model
φ.k/

α . In practice, we may be more interested in choosing the best-fitted copula model from several
candidates that are indexed by k =1, 2, . . . , K. For this, we can select the model that yields the
smallest Dk. Now we derive theoretical properties of the model selection procedure proposed.

Theorem 3. Assume that .X, Y/ follow model (10) and both variables are continuous and the
independent censoring variable C has bigger support than the supports of X and Y. Suppose
that there are K model candidates in the AC family. Let the kth model C.k/

α .u, v/ be charac-
terized by φ.k/

α .t/, which has regular analytic properties in t and is continuous in α, whose
parameter space is a closed set. If φ.k/

α is the true copula model, Dk →P 0 as n→∞. If φ.k/
α is

not the true model, Pr{lim infn→∞.Dk/> 0}=1. Furthermore let k̂ denote the copula model
that yields the smallest Dk among all the candidates. Then φ.k̂/

α is consistent if the true copula
model is included in the list of candidates.

In Appendix D, a sketch of the proof for theorem 3 is given. A more detailed proof can be
found in section 3 of Hsieh et al. (2007).
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3.2. Selection of the covariate model
After specifying the form of model (2), our procedure requires choosing an appropriate regres-
sion model in expression (1). If model (1) is correctly specified, gkj.t, θ0/=0 and it is reasonable to
expect that ĝkj.t, θ̂/ is closer to zero for the correct model than a wrong model for moderate sam-
ple sizes. This fact can be used to check the model assumption (1). Let DR =maxk,j, t |ĝkj.t, θ̂/|.
A formal model checking procedure can be formulated as testing the hypothesis H0: the form of
model (1) is correct versus Ha: the form of model (1) is not correct. The null hypothesis is rejected
if DR is too big. The cut-off value for the test can be calculated by applying the bootstrapped
method which can also be used for model selection. Suppose that there are several choices for
model (1), say model k =1, 2, . . . , K. To select the best-fitting model, we can simply choose the
model with smallest Dk

R, where Dk
R is calculated under model k.

4. Numerical analysis

4.1. Simulation results
We designed several simulation settings to examine the validity and robustness of the methods
proposed. Data generation algorithms for the Clayton model and the Frank model have been
given in Prentice and Cai (1992) and Genest (1987) respectively. In the following analysis, we
set the weight functions as w0.z′

ijθ/=1 and

Ŵij.x/= .ni +nj/ Ĝzi .x/ Ĝzj .x/

ni Ĝzi .x/+nj Ĝzj .x/
:

For each estimator under evaluation, the average bias and the standard deviation based on 1000
runs are reported. Here we describe only summary information of the numerical settings. For
the details, refer to section 4 of Hsieh et al. (2007).

Tables 1 and 2 contain the results of the first analysis that compared our proposed estima-
tor θ̂ and θ̂L, the estimator of Lin et al. (1996). We set .", ξ/|Z to follow an AC model with
Z =0, 1. Then, on the basis of .", ξ, Z/, the value of .X, Y/ can be determined from the models
h1.X/=−θ0Z+" and h2.Y/=−η0Z+ ξ. Here we set θ0 =η0 =0:5 and n0 =n1 =150. Note that
all the assumptions are satisfied for θ̂. However, in the evaluation of θ̂L, the covariate model
for X is correct but the assumption about common dependence structures for the two groups
or the extra assumption on a covariate model for Y may be misspecified.

In the four cases in Table 1, we consider the location–shift model with h1.t/=h2.t/= t. We shall

Table 1. Finite sample performance of two estimators
evaluated under four situations†

Model θ̂ θ̂L

Case 1 −0.0026 (0.0934) −0.0025 (0.0909)
Case 2 −0.0013 (0.1136) 0.0969 (0.0849)
Case 3 0.0022 (0.0950) −0.0122 (0.0888)
Case 4 0.0008 (0.1100) 0.0982 (0.0840)

†The correlation structures are the same for two covari-
ate groups in the first case and different in the last three
cases. The first number is the average bias of the estimator
and the number in parentheses is the standard deviation
based on 1000 replications.
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Table 2. Finite sample performance of two estima-
tors evaluated under four situations with different
covariate models for progression time and death time
(thus θ̂L becomes invalid)†

Model θ̂ θ̂L

Case 5 −0.0041 (0.0974) 0.0890 (0.1175)
Case 6 −0.0067 (0.1135) 0.3387 (0.1127)
Case 7 0.0025 (0.1156) 0.0884 (0.1170)
Case 8 0.0125 (0.1152) 0.3793 (0.1081)

†The first number is the average bias of the estimator
and the number in parentheses is the standard devia-
tion based on 1000 replications.

use the notation {Clayton.τ0/, Frank.τ1/} to denote the situation that one group with Z=0 fol-
lows the Clayton model with τ =τ0 and the other with Z=1 follows the Frank model with τ =τ1.
The dependence structures for the four cases are case 1, {Clayton.0:5/, Clayton.0:5/}, case
2, {Clayton.0:8/, Clayton.0:1/}, case 3, {Frank.0:5/, Clayton.0:5/}, and case 4, {Frank.0:8/,
Clayton.0:1/}. In case 1 where the conditions for both estimators are valid, θ̂L slightly outper-
forms θ̂. However, in the last three cases, θ̂L is biased. It seems that the bias of θ̂L is affected
more by the discrepancy in the level of associations for the two groups than the difference in
the dependence structures.

Table 2 contains the results for another four conditions (cases 5–8). We set h1.t/ = t but
h2.t/ = log.t/, which is a condition that violates the assumption that was made by Lin et al.
(1996). The dependence structures in these four cases follow the same pattern as in cases 1–4 in
Table 1. We see that θ̂ outperforms θ̂L even more since, for the latter, the two types of assumption
are both misspecified.

The second analysis checks the validity of the proposed method for selecting an appropriate
copula model. Suppose that there are two copula models under consideration, where model
k =1 is the Clayton model and model k =2 is the Frank model. First we set the Clayton model
as the true model and n=150. The mean and standard deviation (in parentheses) of D1 and D2

are 0.0780 (0.0187) and 0.1397 (0.0304) on the basis of 1000 replications. The percentages of
successfully selecting the Clayton model are 93:4% on the basis of the order of Dj .j =1, 2/. Then
we set the Frank model as the true model. The mean and standard deviation (in parentheses)
of D1 and D2 are 0.1398 (0.0330) and 0.0819 (0.0206). The percentages of successfully selecting
the Frank model are 92:3% on the basis of the order of Dj .j = 1, 2/. Finally, we examine the
proposed testing procedure by using the resampling method. Under the Clayton model, we set
up the goodness-of-fit test H0 : the data follow the Clayton model versus Ha: the data do not fol-
low the Clayton model. By resampling 1000 times, we obtained D1 =0:0511 with p-value 0.909
and the cut-off value c1 = 0:1004 (at 0.05 significance level). Hence hypothesis H0 is accepted,
which is the correct decision. For the same data set, we ran the analysis again with H0 : the data
follow the Frank model versus Ha: the data do not follow the Frank model. We obtained that
D2 = 0:1247 with p-value 0.012; the cut-off value (γ = 0:05) c2 = 0:1058. Accordingly we reject
hypothesis H0, which is also the correct decision.

Under the Clayton model with τ0 = 0:5 and τ1 = 0:6, we examine the method proposed that
was introduced in Section 3.2 for selecting an appropriate regression model. Table 3 lists the
proportions of each model being selected by the method proposed on the basis of 500 simulation
runs. The proportion of times that the true model is selected increases as the sample size grows
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Table 3. Proportion of the covariate models that were selected by the method proposed on the
basis of 500 replications†

True model n Proportions (%) for the following chosen models:

Location– Accelerated Proportional Proportional
shift failure time hazards odds

Location–shift 100 96.2 3.8 0 0
200 99.6 0.4 0 0
400 100 0 0 0

Accelerated failure time 100 0.8 43.4 35.6 20.2
and proportional hazard 200 0.2 39 43.8 17

400 0 47.8 44.2 8

†The first column lists the true covariate model; the second column lists the sample size; the last four
columns contain the proportion of each of the four covariate models selected.

Table 4. Finite sample performance of θ̂
0†

Model Results for the following models:

Location–shift Accelerated failure time Proportional hazard Proportional odds

Clayton −0.0024 (0.1113) 0.0029 (0.1736) −0.0022 (0.1507) 0.0039 (0.2683)
−0.0015 (0.1105) 0.0058 (0.1662) −0.0032 (0.1514) −0.0023 (0.2633)

Frank −0.0042 (0.1016) −0.0084 (0.1734) 0.0067 (0.1544) −0.0028 (0.2573)
0.0011 (0.0995) −0.0094 (0.1661) −0.0096 (0.1680) 0.0013 (0.2602)

†The first number in each column is the average bias of θ̂1, the second number in parentheses is the
standard deviation of θ̂1 based on 1000 replications, the third number is the average bias of θ̂2 and the
fourth number in parentheses is the standard deviation of θ̂2 based on 1000 replications.

larger. When the true model changes to the accelerated failure time and proportional hazard
models, which are both correct in our setting, these two models together are chosen most of
the time. As n increases, the proportion of a correct decision also increases (79% when n=100,
82.8% when n=200 and 92% when n=400).

We also examined the situation of multiple covariates. With Z′ = .Z.1/, Z.2// in which Z.j/ .j =
1, 2/ are both binary, the sample can be portioned into four groups with Z′

1 = .0, 0/ .τ = 0:2/,
Z′

2 = .0, 1/ .τ = 0:3/, Z′
3 = .1, 0/ .τ = 0:4/ and Z′

4 = .1, 1/ .τ = 0:5/. The sample size in each of
the four groups is 75. We evaluated two dependence structures, namely Clayton and Frank, and
four regression models, namely location–shift, accelerated failure time, proportional hazard
and proportional odds, for each of which θ′

0 = .0:3, 0:3/. The average bias and the standard
deviation on the basis of 1000 simulation runs are reported in Table 4. The results show that
the method proposed still performs well under various regression settings.

4.2. Data analysis
The methodology proposed is applied to the bone marrow transplants data that were given in
Klein and Moeschberger (2003), page 484. There were 137 leukaemia patients receiving bone
marrow transplants. Let X be the time to relapse of leukaemia, Y be the time to death and C
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be the time from transplant to the end of study. Let δx = I.X � Y ∧ C/ be the relapse indica-
tor and let δy = I.Y � C/ be the death indicator. The sample can be divided into three groups
with Z′ = .0, 0/ indicating the acute myelogenous leukaemia (AML) low risk group, Z′ = .0, 1/

indicating the acute lymphoblastic leukaemia (ALL) group and Z′ = .1, 0/ indicating the AML
high risk group. The regression model of interest is h.X/=−Z′θ + ", where θ′ = .θ1, θ2/ which
measures whether the disease type affects the relapse time.

For each covariate group, we test the hypothesis H0 :φα ∼ Clayton model versus Ha: not H0.
By bootstrapping 1000 times, the p-values of DC for the AML high risk group, the ALL group
and the AML low risk group are 0.752, 0.656 and 0.177 respectively. Hence the Clayton model is
adopted for all three groups. Using Day’s method (or equivalently Wang’s method) to estimate
τz, we obtain τ̂.0,0/ =0:7485 .0:1176/, τ̂.0,1/ =0:7894 .0:0853/ and τ̂.1,0/ =0:7685 .0:0872/, where
the number in parentheses is the estimated standard derivation by using the jackknife method.
The above analysis implies that the dependence structures in the three groups are similar and
the two events are highly correlated.

Then we choose a model for measuring the group effect on X. Fig. 1 shows the fitted log–log-
plot of F̂x.x/ for the three groups. Since the three curves look parallel, we choose the proportional
hazard model to measure the group effect. On the basis of the method that was described in
Section 3.2, we can formally test the proportional hazard model assumption. By bootstrapping
1000 times, we obtain p-value 0.774 which implies that this model is appropriate. Fig. 2 depicts
the three survival curves of F̂x.x/. Under the proportional hazard regression model and the
Clayton assumption for each covariate group, we obtain θ̂1 = 1:3624 (0.3765) and θ̂2 = 0:9503
(0.3984). The results show that the risk of relapse for the AML high risk group is 3.9 times that
of the risk for the AML low risk group, and the risk for the ALL group is 2.59 times that of the
AML low risk group. The difference is statistically significant.
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Fig. 1. Log–log-plot for the three groups: , AML high risk group; – – –, ALL group; - - - - -, AML low
risk group
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Fig. 2. F̂x.t/ for the three groups: , AML high risk group; – – –, ALL group; - - - - -, AML low risk
group

5. Concluding remarks

In this paper, we model the failure time to a non-terminal event by a flexible transformation
model. To handle the problem of dependent censoring, we make an additional assumption that,
for each covariate group, failure times for the two types of event follow a copula model in the
identifiable region. Model checking procedures are also proposed to examine the appropriate-
ness of these two model assumptions. Compared with existing methods such as that proposed by
Lin et al. (1996), our approach allows for different dependence structures in each group, avoids
making additional modelling assumptions on the terminal event and utilizes all the data with-
out paying the price for artificial censoring. The simulation analysis confirms our conjecture
that the estimator that was proposed by Lin et al. (1996) becomes unreliable if the dependence
structures in the two groups are different.

The strategy proposed for checking the copula assumption is to compare the non-parametric
estimator with its model-based estimator of a chosen reference function, say F11.t1, t2/. This
technique is similar to that used in Wang and Wells (2000). For possible future research, one
may examine how to choose such a function or a combination of several functions that contain
most of the model information that is characterized by φ.·/ so that the corresponding test pro-
cedure would detect the departure from the null hypothesis better and hence give higher power.
To select an appropriate regression model for the non-terminal event, a formal model checking
procedure is also proposed by using the bootstrap method. The regression method proposed can
handle multiple covariates with discrete values. Extension to continuous covariates must face
the challenge of imposing additional regression assumptions on model (2) or adopting some
non-parametric techniques like smoothing. This goes beyond the scope of the current paper but
may deserve further investigation. Note that in model (3) we suggest use of the Kaplan–Meier
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estimator based on data {.Ỹ i, 1 − δyi/ .i= 1, . . . , n/} to estimate G.t/. Since C is also censored
by X ∧Y , another estimator based on data {.X̃i, 1 − δxiδxi/ .i= 1, . . . , n/} can be constructed.
Obviously the latter yields a worse estimator of G.t/. However, it has been shown in other con-
texts, such as in Tsai and Crowley (1998), that plugging in a worse estimator of the nuisance
parameter sometimes improves the result.
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Appendix A: Regularity conditions of theorem 1

Let

Ū.θ/= ∑
k<j

w0.z
T
kjθ/zkj

√(
ckcj

ck + cj

)∫ Tkj

0
Wkj.t/ gkj.t, θ/ dt .12/

where ck = limn→∞.nk=n/, and .0, Tkj/ is the support of X̃ in the subgroup with Z= zk or Z= zj . To derive
large sample properties of θ, we assume the following regularity conditions.

(a) As n→∞, ck = limn→∞.nk=n/> 0 for all k values.
(b) For each Z = zk, the Hzk

.u, v, α/ has bounded partial derivatives with respect to u, v and α, where
Hz.u, v, α/=φ−1

z,α{φz,α.u/+φz,α.v/} is defined in model (2).
(c) For each Z = zk, the standard regularity conditions hold for estimating Fzk

.x, x/ and Fy, zk
.x/ (e.g.

conditions for theorem 6.3.2 in Fleming and Harrington (1991)) so that nk
1=2{F̂zk

.x, x/−Fzk
.x, x/}

and nk
1=2{F̂y,zk

.x/−Fy,zk
.x/} converge weakly to Gaussian processes.

(d) The weight functions w0.x/ and Wkj.t/ are positive and bounded and w0.x/ is differentiable with
continuous derivatives.

(e) For each of the two classes of model (1), we impose the following assumptions:
(i) for the first case, h.t/ is differentiable, h′.t/ �=0 and is continuous, W̃kj.t/=Wkj.t/=h′.t/ is differ-

entiable and
∫ |W̃kj.t/| dt<∞;

(ii) for the second case, the distribution of " has a density f".t/ which is differentiable with bounded
derivatives.

(f) The function Ū.θ/ which is defined in equation (12) is differentiable with respect to θ and the
matrix (

@

@θ1
Ū.θ0/, . . . ,

@

@θp

Ū.θ0/

)

is non-singular. Furthermore Ū.θ/ �=0 for θ �=θ0 and lim inf‖θ‖→∞|Ū.θ/|> 0.

Appendix B: Sketch of proof for theorem 1

Here we provide a brief sketch of the proof of theorem 1; the details are given in Hsieh et al. (2007).
Consider

U.θ/= ∑
k<j

w0.z
T
kjθ/zkj

√{
.nk=n/nj=n

nk=n+nj=n

}∫ tkj

0
Wkj.t/ ĝkj.t, θ/ dt,

where Wkj.t/ is a deterministic function. Equation (A.5) in Hsieh et al. (2007) states that U.θ/=n1=2 converges
(in probability) to

Ū.θ/= ∑
k<j

w0.z
T
kjθ/zkj

√(
ckcj

ck + cj

)∫ Tkj

0
Wkj.t/ gkj.t, θ/ dt,
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in which the convergence is uniform in θ. Consider a compact set Dr ={‖θ−θ0‖� r} where r is a positive
constant. By assumption (f) Ū.θ/ �= 0 for θ �= θ0 and lim inf‖θ‖→∞|Ū.θ/| > 0; then the continuity of Ū.θ/
implies that inf‖θ−θ0‖>r|Ū.θ/|> 0. The (uniform) convergence of U.θ/=n1=2 to Ū.θ/ implies that there will
be no solution for U.θ/=0 outside the compact set Dr when n is large. Since this is true for every r > 0, θ̂
is consistent.

By Taylor series expansion we obtain

U.θ̂/=0=U.θ0/+
p∑

l=1

@

@θl

U.θ̌/.θ̂l −θl,0/, .13/

where θ̌ is an intermediate value between θ0 = .θ1,0, . . . , θp,0/
T and θ̂ = .θ̂1, . . . , θ̂p/T. Hence we have the

expression

1
n1=2

(
@

@θ1
U.θ̌/, . . . ,

@

@θp

U.θ̌/

)
n1=2.θ̂ −θ0/=−U.θ0/: .14/

The statement of expression (A.6) in Hsieh et al. (2007) is about the convergence of

1
n1=2

@

@θl

U.θ/

to

@

@θl

Ū.θ/

locally uniformly at θ =θ0. Using this condition along with the consistency of θ̂, we can show that

1
n1=2

(
@

@θ1
U.θ̌/, . . . ,

@

@θp

U.θ̌/

)
P→

(
@

@θ1
Ū.θ0/, . . . ,

@

@θp

Ū.θ0/

)
which, by assumption (f), is a non-singular constant matrix. By expression (A.7) in Hsieh et al. (2007),
U.θ0/ is asymptotic normal with mean 0. Therefore n1=2.θ̂−θ0/ is asymptotic normal with mean 0 because
it has the same asymptotic distribution as

−
(

@

@θ1
Ū.θ0/, . . . ,

@

@θp

Ū.θ0/

)−1

U.θ0/:

This completes the proof.

Appendix C: Sketch of proof for theorem 2

Compared with the previous proof, we need to show only that

(a) {Û.θ/−U.θ/}=n1=2 uniformly strongly converges to 0,
(b) @[{Û.θ/−U.θ/}=n1=2]@θl strongly converges to 0, which takes place locally uniformly at θ =θ0, and
(c) Û.θ0/−U.θ0/ strongly converges to zero.

Firstly,

Û.θ/−U.θ/

n1=2
= ∑

k<j

w0.z
T
kjθ/zkj

√{
.nk=n/nj=n

nk=n+nj=n

}∫ tkj

0
{Ŵkj.t/−Wkj.t/} ĝkj.t, θ/ dt: .15/

Under the related regularity conditions and the uniform and strong convergence of Ŵkj.t/ to Wkj.t/, we
can establish the uniform and strong convergence of expression (15) to 0. So condition (a) holds.

Secondly, we can write

Û.θ0/−U.θ0/= ∑
k<j

w0.z
T
kjθ0/zkj

√{
.nk=n/nj=n

nk=n+nj=n

}∫ tkj

0
{Ŵkj.t/−Wkj.t/}n1=2 ĝkj.t, θ0/ dt: .16/

Under the related regularity conditions as well as n1=2 ĝkj.t, θ0/=Op.1/ for all t and Ŵkj.t/−Wkj.t/=op.1/,
we can show strong convergence of expression (16) to 0. So condition (c) holds.
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Finally

@

@θl

{
Û.θ/−U.θ/

n1=2

}
= ∑

k<j

w′
0.z

T
kjθ/zkjzkj, l

√{
.nk=n/nj=n

nk=n+nj=n

}∫ tkj

0
{Ŵkj.t/−Wkj.t/} ĝkj.t, θ/ dt

+ ∑
k<j

w0.z
T
kjθ/zkj

√{
.nk=n/nj=n

nk=n+nj=n

}
@

@θl

∫ tkj

0
{Ŵkj.t/−Wkj.t/} ĝkj.t, θ/ dt:

.17/

The required regularity conditions plus the uniform strong convergence of Ŵkj.t/ to Wkj.t/ imply that the
first term in equation (17) converges uniformly (in θ) and strongly to 0. To prove the second term, we need
to consider the two regression classes separately.

For the first case that ξθ.F/.t/=F [h−1{h.t/+θ}],

∑
k<j

w0.z
T
kjθ/zkj

√{
.nk=n/nj=n

nk=n+nj=n

}
@

@θl

[∫ tkj

0
{Ŵkj.t/−Wkj.t/} ĝkj.t, θ/ dt

]

= ∑
k<j

w0.z
T
kjθ/zkj

√{
.nk=n/nj=n

nk=n+nj=n

}

×
h−1{h.tkj /+zT

kj
θ}∫

h−1{h.0/+zT
kj

θ}

.Ŵkj [h−1{h.tÅ/− zT
kjθ}]−Wkj [h−1{h.tÅ/− zT

kjθ}]/zkj, l

h′[h−1{h.tÅ/− zT
kjθ}]

dF̂x,zk
.tÅ/:

(See the proof of expression (A.4) in Hsieh et al. (2007).) Note that local boundedness of 1=h′[h−1{h.tÅ/−
zT

kjθ}] can be established owing to the continuity of h′.t/. The related regularity conditions and the result
of expression (A.4) in Hsieh et al. (2007) imply that the second term in equation (17) locally uniformly
strongly converges to 0.

For the second case that ξθ.F/.t/=F"[F−1
" {F.t/}+θ], then ξ′

θ.F/.t/=f"[F−1
" {F.t/}+θ]. Hence

∑
k<j

w0.z
T
kjθ/zkj

√{
.nk=n/nj=n

nk=n+nj=n

}
@

@θl

[∫ tkj

0
{Ŵkj.t/−Wkj.t/} ĝkj.t, θ/ dt

]

= ∑
k<j

w0.z
T
kjθ/zkj

√{
.nk=n/nj=n

nk=n+nj=n

}∫ tkj

0
{Ŵkj.t/−Wkj.t/} zkj, l f"[F−1

" {F̂ .t/}+ zT
kjθ] dt,

which converges uniformly to 0, owing to the related regularity conditions, uniform strong convergence of
Ŵkj.t/ to Wkj.t/ and the boundedness of f"[F−1

" {F̂ .t/}+ zT
kjθ], i.e. the second term in equation (17) locally

uniformly strongly converges to 0.
In summary equation (17) locally uniformly strongly converges to 0, i.e. condition (b) holds. This com-

pletes the proof.

Appendix D: Sketch of proof for theorem 3

First, the empirical distribution function is uniformly consistent, i.e. supt1�t2
|F̂ 11

.t1, t2/−F 11.t1, t2/|→P 0
as n→∞. Then it can be shown that, for t1 � t2, F̃

11
k .t1, t2/ uniformly converges to

F̄ 11
k .t1, t2, α̂/=

∫ ∞

y=t2

∫ y

x=t1

F̄k.dx, dy, α̂/ G.y/∫ ∞

y=0

∫ y

x=0
F̄k.dx, dy, α̂/ G.y/

,

where F̄k.dx, dy, α̂/ = F̄k.x, y, α̂/ − F̄k.x + dx, y, α̂/ − F̄k.x, y + dy, α̂/ + F̄k.x + dx, y + dy, α̂/ and F̄k.x, y,
α̂/=φ.k/

α̂

−1
[φ.k/

α̂ {Fx.x/}+φ.k/
α̂ {Fy.y/}]. If φ.k/

α is the true copula model, then α̂→P α and F̄ 11
k .t1, t2, α̂/ uni-

formly converges to F 11.t1, t2/. Therefore, Dk →P 0.
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If φ.k/
α is not the true model, let dk.α

Å/= supt1�t2
|F̄ 11

k .t1, t2, αÅ/−F 11.t1, t2/|. We can show that dk.α
Å/>0

for all αÅ ∈Ak. To see this, let us consider when dk.α
Å/=0, i.e.∫ ∞

y=t2

∫ y

x=t1

F̄k.dx, dy, αÅ/ G.y/∫ ∞

y=0

∫ y

x=0
F̄k.dx, dy, αÅ/ G.y/

=

∫ ∞

y=t2

∫ y

x=t1

F.dx, dy/ G.y/∫ ∞

y=0

∫ y

x=0
F.dx, dy/ G.y/

for all t1 � t2, where F.dx, dy/ = F.x, y/ − F.x + dx, y/ − F.x, y + dy/ + F.x + dx, y + dy/ and F.x, y/ =
φα

−1[φα{Fx.x/}+φα{Fy.y/}]. Let

pÅ =
∫ ∞

y=0

∫ y

x=0
F̄ k.dx, dy, αÅ/ G.y/

and

p=
∫ ∞

y=0

∫ y

x=0
F.dx, dy/ G.y/:

Note that p and pÅ are constants independent of t1 and t2. Hence the above equation becomes∫ ∞

y=t2

∫ y

x=t1

{
F̄k.dx, dy, αÅ/

pÅ − F.dx, dy/

p

}
G.y/=0

for all t1 � t2. Therefore,

F̄k.dx, dy, αÅ/=pÅ −F.dx, dy/=p=0

on the region {.x, y/ : x � y and G.y/ > 0}. Consider the variables u = Fx.x/ and v = Fy.y/; it is easy
to see that F.dx, dy/ = Cα.du, dv/ and F̄k.dx, dy, αÅ/ = C

.k/
αÅ .du, dv/. By the assumption that C has

larger support than the supports of X and Y , both Fx.x/ and Fy.y/ change from 1 to 0 on the region
{.x, y/ : x�y and G.y/> 0}. Therefore we have

C
.k/
αÅ .du, dv/=pÅ −Cα.du, dv/=p=0

on the region {.u, v/ : 0 � Fx{F−1
y .v/}� u � 1}. Therefore, the analytical properties of φ.k/

αÅ and φα imply
that the above equality holds over the region {.u, v/ : 0�u�1, 0�v�1}. This together with the fact that
C

.k/
αÅ .0, 0/=Cα.0, 0/=0 imply that

p C
.k/
αÅ .u, v/=pÅ Cα.u, v/

on the region {.u, v/ : 0�u�1, 0�v�1}. Since C
.k/
αÅ .1, 1/=Cα.1, 1/=1, p=pÅ. Now, C

.k/
αÅ .u, v/=Cα.u, v/

on the region {.u, v/ : 0�u�1, 0�v�1}. This contradicts the fact that φ.k/
α is not the true copula model.

Hence dk.α
Å/ > 0 for all αÅ ∈ Ak. This fact together with the closedness of Ak and the continuity in αÅ

imply that dk = infαÅ∈Ak
{dk.α

Å/}> 0. Therefore, if model k is wrong, Dk →P dk > 0.
Suppose that there are K candidate models under consideration. Let

d = inf .dk/
{k:1�k�K,φ.k/

α is not true copula model}
:

Then d> 0. And, as n→∞, Pr.Dk >d=2/→1 if model k is wrong whereas Pr.Dk <d=2/→1 if model k is
correct. Therefore k̂ is consistent.
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