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Abstract: Copula models are often used to model the dependence structure in bivariate failure-time data. We
consider a covariate effect regression method on the copula parameter for Archimedean copulas. The proposed
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sample performances via simulations and application to a well-known data set.
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1 Introduction

Let T1 and T2 be a pair of continuous lifetime ran-
dom variables. The dependence structure between
them can be described the copula according to Sklar’s
theorem: F (t1, t2) = C{F1(t1), F2(t2)}, where F is
the joint cumulative distribution (or survival) function,
and F1 and F2 are corresponding marginal functions.
The copula function C : [0, 1]2 → [0, 1] summarized
the dependence information between T1 and T2.

Parametric copula models have been used for s-
tatistical inference in analyzing bivariate survival da-
ta subject to independent censoring [1, 2], semi-
competing risks data [3, 4, 5, 6, 7, 8, 9] and dependent
truncation data [10, 11].

When covariates are present, most analysis fo-
cused on the covariate effects on the marginal distri-
butions, and assume that the copula is constant across
different covariate values. Recently, a few work al-
lows the copula to change with covariates. The semi-
competing risks data marginal regression using es-
timating equations [9] and nonparametric maximum
likelihood estimation [12] allowed covariate-varying
copula. [13] considered the nonparametric estimation
of the covariate-varying Clayton copula parameter us-
ing local kernel methods for three types of bivari-
ate failure-time data in the following. Here we con-
sider parametric regression of the covariate-varying
Archimedean copulas parameter. To simplify the il-
lustration, external censoring is temporarily ignored
but will taken into account in Section 2.2.
Data Structure 1 - Typical failure-time data. There
is no specific relationship between T1 and T2 so that

possible observations fall in the region of {(s, t) : 0 <
s < ∞, 0 < t < ∞}. Such data are suitable for
measuring the failure times occurred to different bio-
logical units such as twins, family members or paired
organs on the same person.

Data Structure 2 - Semi-competing risks data. In anal-
ysis of multiple events data, let T1 be the time to a
non-terminal event such as onset of a disease and T2
the time to a terminal event such as death. Notice
that T2 is a competing risk for T1 but not vise ver-
sa. One can only observe (T1 ∧ T2, T2, I(T1 ≤ T2)).
Complete observations of (T1, T2) can only fall in
{(s, t) : 0 < s ≤ t < ∞}. Incomplete observa-
tions are those with T1 > T2 in which the value of T2
is still observable.

Data Structure 3 - Dependent truncation data. As-
sume (T1, T2) are observable only if T1 < T2. We say
T1 is subject to right truncation by T2 or T2 subject to
left truncation by T1. In an example of transfusion-
related AIDS, (T1, T2) may refer to the incubation
time from infection to AIDS and the lapse time mea-
sured from infection to the end of study, respectively.
Only those who developed AIDS before the end of s-
tudy can be included in the sample.

In Section 2, we introduce the proposed method-
ology. Section 3 describes the simplified version un-
der Clayton copula. The resulting estimator is shown
to be asymptotically normally distributed. In addition
a method to check the Clayton association Assump-
tion is proposed. Section 4 studies the proposed esti-
mator through synthetic data and a real data set.
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2 The Proposed Approach

We propose to conduct the regression analysis through
time-varying local dependence measures. We first in-
troduce these measures. Then we derive an estimating
equation using such measures.

2.1 Time-varying Association Measures

For two correlated uniform variables U1 and U2 on the
unit interval, their joint distribution can be defined as
the copula function

Cα(u1, u2) = Pr(U1 ≤ u1, U2 ≤ u2),

where α measures the degree of associ-
ation and is related to Kendall’s tau as
τ = 4

∫ 1
0

∫ 1
0 Cα(u1, u2)Cα(du1, du2) − 1. Lo-

cal dependence structure between U1 and U2 can be
described by the cross ratio function [14]:

θ(u1, u2) =
{Cα(u1, u2)}{D1D2Cα(u1, u2)}
{D1Cα(u1, u2)}{D2Cα(u1, u2)}

, (1)

where Dj means taking derivative respect to uj for
j = 1, 2. Equivalently the above function can be writ-
ten as the local odds ratio function:

θ(u1, u2) =
Pr(∆o

ij = 1|Ũ ij = (u1, u2))

Pr(∆o
ij = 0|Ũ ij = (u1, u2))

, (2)

where ∆o
ij = I{(U1i − U1j)(U2i − U2j) > 0} is the

concordance indicator for (U1i, U2i) and (U1j , U2j),
which are independent replications of (U1, U2), and
Ũ ij = (U1i ∨ U1j , U2i ∨ U2j).

Conditional on the covariate value Z = z, the
copula structure on lifetime variables (T1, T2) is

Fz(t1, t2) = Cα(z){F1,z(t1), F2,z(t2)}, (3)

where Fz is a joint function of (T1, T2) and Fk,z is
a marginal function for Tk for k = 1, 2. We fol-
low the conventions for the three data structures dis-
cussed in Section 1. For data structures 1 and 2,
Fk,z(tk) = Prz(Tk > tk) (k = 1, 2) and Fz(t1, t2) =
Prz(T1 > t1, T2 > t2); but for the third type,
F1,z(t1) = Prz(T1 ≤ t1), F2,z(t) = Prz(T2 > t2)
and Fz(t1, t2) = Prz(T1 ≤ t1, T2 > t2) for 0 ≤ t1 <
t2 < ∞. The covariate effects on the marginal status
is reflected in F1,z and F1,z . In this paper, we focus
on the covariate effect on association which is char-
acterized by α(z). We propose to study α(z) through
θz . The θz is defined as θ in (2) conditional on Z = z,
and is related to α(z) through equation (1).

Since we can not directly observe Ũ ij , we first
find the local odds ratio θz on the original time scale.

Let (T1i, T2i, Zi) (i = 1, . . . , n) be a random sample
of (T1, T2, Z). Assume that Z takes discrete values.
Conditional on Zi = Zi = z we can define ∆ij =
I{(T1i − T1j)(T2i − T2j) > 0} which only involves
the original time variables. Then the value of ∆o

ij ,
which is defined under equation (2), can be known
from ∆ij . Specifically, ∆ij = ∆o

ij for the first two
data structures, and ∆ij = 1 −∆o

ij for the third data
structure. Based on ∆ij , we define θ̃z(t1, t2) as

Pr(∆ij = 1|T̃ ij = (t1, t2), Zi = Zj = z)

Pr(∆ij = 0|T̃ ij = (t1, t2), Zi = Zj = z)
(4)

where T̃ ij = (T1i ∧ T1j , T2i ∧ T2j) and hence
θ̃z(t1, t2) = θz(u1, u2) for the first two data struc-
tures; T̃ ij = (T1i ∨ T1j , T2i ∧ T2j) and hence
θ̃z(t1, t2) = 1/θz(u1, u2) for the third type. Here,
u1 = F1,z(t1) and u2 = F2,z(t2). Accordingly the
time-varying concordance probability

π̃z(t1, t2) = θ̃z(t1, t2)/[1 + θ̃z(t1, t2)] (5)

denotes Pr(∆ij = 1|T̃ ij = (t1, t2), Zi = Zj = z).
When the underlying copula function is specified,

we have explicit formula for θz(u1, u2), then can de-
rive π̃z(t1, t2) using (4) and (5). We can then estimate
the covariate effects on α(z) by estimating π̃z(t1, t2).
[15, 16] studied the estimation of time-varying associ-
ation measures θ for bivariate survival data. Our focus
is different in that our objective is not in θz but using
this to infer the covariate effect on α(z).

2.2 Effect of External Censoring

Now we incorporate external censoring in the three
data structures which occurs due to drop-out or the
end-of-study effect. For the three data structures,
we use (X1i, X2i, δ1i, δ2i, Zi) (i = 1, . . . , n) to de-
note observed data but the definitions depend on
the data type. For typical failure-time data, assume
that (T1i, T2i) is subject to independent censoring by
(C1i, C2i) such that Xki = Tki ∧ Cki and δki =
I(Tki ≤ Cki) for k = 1, 2. For semi-competing risks
data, assume that (T1i, T2i) are subject to a common
external censoring variable Ci so that X1i = T1i ∧
T2i ∧Ci, X2i = T2i ∧Ci and δki = I(Xki = Tki) for
k = 1, 2. For the third type, we consider left truncated
and right censored data such that T2i may be censored
by an external censoring variable Ci. Observed vari-
ables are X1i = T1i, X2i = T2i ∧ Ci, δ1i = 1 and
δ2i = I(T2i ≤ Ci) subject to X2i > X1i = T1i.

It is important to note that a random sample of
(T1i, T2i, Zi) (i = 1, . . . , n) is not available in the lat-
ter two data structures even without external censor-
ing. When censoring is present, the value of ∆ij may
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be unknown. Now we derive the condition that ∆ij

can be fully observed and provides unbiased informa-
tion about π̃z(t1, t2). Let T̃ ij = (T̃1,ij , T̃2,ij). The
for data structure 1, we define Dij(z) = I(T̃1,ij <

C̃1,ij , T̃2,ij < C̃2,ij , Zi = Zj = z) where C̃k,ij =
C1i ∧ Ckj (k = 1, 2). For data structure 2, Dij(z) =

I(T̃1,ij < T̃2,ij < C̃ij , Zi = Zj = z), where
C̃ij = Ci ∧ Cj . For data structure 3, Dij(z) =

I(T̃1,ij < T̃2,ij < C̃ij , Zi = Zj = z). For each
data structure, it is easy to see that the value of ∆ij is
known when Dij(z) = 1. In addition, define

p̃z(t1, t2) = Pr(∆ij = 1|T̃ ij = (t1, t2), Dij(z) = 1).

Then p̃z(t1, t2) = π̃z(t1, t2) for all (t1, t2) values in
the model range of (3). We will estimate the covariate
effect through p̃z(t1, t2).

2.3 Association Parameter Regression.

We consider a parametric model α(z) = α(z, β) with
parameter β representing the covariate effect on the
association parameter. We consider the inference un-
der Archimedean copulas [17]:

Cα(u1, u2) = ϕ−1
α {ϕα(u1) + ϕα(u2)}, (6)

where the generating function ϕα(·) : [0, 1] → [0,∞]
satisfies that ϕα(1) = 0, ϕ′α(t) < 0 and ϕ′′α(t) > 0.
For analytic ϕα(·) (which is satisfied by all common
Archimedean copulas), the covariate effect model is
identifiable [18, 19].

For Archimedean copulas, the local association
measure θ̃(t1, t2) only dependents on the joint func-
tion Fz and not the marginal functions F1,z and
F2,z . Let θ̄α(v) = −vϕ′′α(v)/ϕ′α(v) for the first t-
wo data structures, and θ̄α(v) = −ϕ′α(v)/[vϕ′′α(v)]
for the third data structure. Then θ̃z(t1, t2) =
θ̄α(z,β)[Fz(t1, t2)]. Hence by (5) we can denote the
regression model as

π̃z(t1, t2) = η(z, β, γz). (7)

Here the nuisance parameter γz = Fz(t1, t2) is the
only time-varying component. Using the subsample
with Z = z, we can get standard nonparametric esti-
mation γ̂z = F̂z(t1, t2). We then find the least-squares
estimator β̂ which minimize

U(β) =
∑

z

∑
i<j{Wz(X̃1,ij , X̃2,ij)Dij(z)

[∆ij − η(z, β, γ̂z(X̃1,ij , X̃2,ij))]
2}.

(8)
Here W is a positive weight function. (X̃1,ij , X̃2,ij)

is defined similarly as T̃ ij , and depends on the da-
ta type. For the first two data structures, X̃k,ij =

Xki∧Xkj (k = 1, 2), and for truncation data, X̃1,ij =

X1i ∨X2j and X̃2,ij = X2i ∧X2j . We use the weight
function Wz,a,b(x1, x2) of the form,

nz∑n
i=1 I{X1i ≥ min(a, x1), X2i ≥ min(b, x2), Zi = z}

,

(9)
where nz is the sample size of Z = z; a and b
are constants. With a = b = 0, the function re-
duces to W 0

z = 1 which is the un-weighted case.
With a = b = ∞, the weight function becomes
W∞

z = nz/
∑n

i=1 I{X1i ≥ x1, X2i ≥ x2, Zi = z}.
For truncation data, there is no information in the
wedge T1 > T2, therefore, we consider alternative
weight function W ∗

z (x1, x2) = nz/
∑n

i=1 I{X1i ≤
x1, X2i ≥ x2, Zi = z}.

3 Simplification for Clayton Copula.

One type of Archimedean copulas is Clayton copula

Cα(u1, u2) = (u1−α
1 + u1−α

2 − 1)
1/(1−α)
+ (α > 0).

Under the Clayton family, the local odds ratio
θz(u1, u2) = α(z) is no longer time-varying. Hence
(7) can be simplified as π̃z(t1, t2) = η(z, β), and
the estimation (8) no longer require estimation of the
time-varying nuisance parameter γz .

We now derive the asymptotic properties of the
estimator β̂ minimizing (8) under the Clayton copula
assumption. Let β∗ be the true value of β. We will
show that β̂ is a consistent estimator of β, and

√
n(β̂−

β∗) converges to a multivariate normal distribution.
Let the list of possible association covariate values be
Z = {z1, ..., zK}. We assume the following technical
conditions:
(T1) nz/n converge to a constant 0 < cz < 1 for each
possible values z ∈ Z .
(T2) The weight function Wz(u, v) has a uniformly
bounded deterministic limit W̃z(u, v).
(T3) The function η(z, β) is twice differentiable a-
gainst parameters β with uniformly bounded partial
derivatives against βk, k = 1, 2, ..., p. η(z, β) =
η(z, β∗) for all z ∈ Z only for β = β∗. When
|β| → ∞, η(z, β) → 0 or 1.
(T4) Let I(β) = (Iij) with Iij =
E[−n−2∂2U(β)/∂βi∂βj ], i = 1, 2, ..., p, j =
1, 2, ..., p denote the Fisher information matrix. Let
Ũ(β) denote the statistic U(β) in (8) with the weight
function Wz replaced by its deterministic limit W̃z .
Let Ĩ(β) =

(
Ĩij
)

with Ũ(β) replacing U(β) in the
definition of of I(β). We assume that the Fisher
information Ĩ(β∗) is nonsingular at true parameter
value β = β∗.
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Theorem 1 Under model (7) for Clayton copulas, the
estimator β̂ minimizing (8) consistent. And

√
n(β̂ −

β∗) converges in distribution to a multivariate normal
distribution with variance Σ which can be consistently
estimated by Σ̂ = Î−1Ĵ(Î−1)′, where Î =

(
Îij
)

and

Ĵ =
(
Ĵij
)

are matrices of dimension p× p with

Îij = − 1

n2
∂2U(β)

∂βi∂βj
|β=β̂, (10)

Ĵij =
2
n3

∑
z
[
∑

k<l<m
(Q̂

(i)
kl,zQ̂

(j)
km,z + Q̂

(i)
kl,zQ̂

(j)
lm,z

+Q̂
(i)
lm,zQ̂

(j)
km,z) +

∑
k<l

(Q̂
(i)
kl,zQ̂

(j)
kl,z)],

(11)
Q̂

(k)
ij,z = 2Wz(X̃1,ij , X̃2,ij)Dij(z)

[∆ij − η(z, β̂)](−∂η(z,β)
∂βk

)|β=β̂.

Proof: We first show that the statistics n−2U(β) in
(8) has a positive limiting deterministic function in β
that is minimized at β = β∗. Note that Ũ(β) is

Ũ(β) =
∑
z

∑
i<j

W̃z(X̃ij , Ỹij)Dij(z)[∆ij − η(z, β)]2.

Then

n−2|U(β)− Ũ(β)| ≤ 1

2
sup
z,u,v

|W̃z(u, v)−Wz(u, v)|

which by condition (T2) converges to zero in proba-
bility. Therefore we only need to show that the limit
of Ũ(β) in probability is positive and is minimized
at β = β∗. Under the model assumptions, for those
Zi = Zj = z and Dij(z) = 1, ∆ij is a Bernoulli
random variable with Pr(∆ij = 1) = η(z, β∗). Hence
E{[∆ij − η(z, β)]2|Zi = Zj = z,Dij(z) = 1} =
η(z, β∗)[1− η(z, β∗)]+ [η(z, β∗)− η(z, β)]2. So this
decompose n−2

z E{
∑

i<j W̃z(X̃ij , Ỹij)Dij(z)[∆ij −
η(z, β)]2} into two terms, by the law of large number-
s, converges to positive constant dz and ez(β) respec-
tively. Then E[n−2Ũ(β)] →

∑
z c

2
zdz +

∑
z c

2
zez(β),

which is minimized if and only if
∑

z c
2
zez(β) = 0

when β = β∗ by condition (T3). By the law of large
numbers, we can see that n−2Ũ(β) converges to its
expectation. Hence n−2U(β) also converges to this
limit which is uniquely minimized by β = β∗.

The consistency of β̂ then comes from the unifor-
m convergence of n−2U(β) within a neighborhood of
β = β∗ and the condition (T3).

Let u(β) = ∇βU(β) denote the gradient of
U(β). Since the local minimizer of U(β) also solves
u(β) = 0, without loss of generality, we can take β̂ as
a consistent root of u(β) = 0. Let ũ(β) denote u(β)

with Wz replaced by W̃z . Under model (7), the limit
of E[u(β∗)] is E[ũ(β∗)] = 0. And the limit of I(β∗)
is the nonsingular matrix Ĩ(β∗). So without loss of
generality, by Taylor expansion:
√
n(β̂ − β∗) = [Ĩ(β∗)]−1n−3/2u(β∗) + op(1)

=
(
n−3/2∑

z

∑
i<j Q

(k)
ij,z

)
+ op(1),

where Q
(k)
ij,z = 2W̃z(X̃ij , Ỹij)Dij(z)[∆ij −

η(z, β∗)](−∇βη(z, β)|β=β∗). By the central lim-
it theorem for U-statistic and Slutsky’s theorem:√
n(β̂ − β∗) converges in distribution to a multi-

variate normal distribution with variance Σ which is
consistently estimated by Σ̂ = Î−1Ĵ(Î−1)′, where Î
and Î are defined in (10) and (11). ⊓⊔

3.1 Checking the Clayton Assumption

We propose a generalized version of Shih [20]’s test to
verify the Clayton assumption for all three data struc-
tures. Let U1(β) and U2(β) follow the same form as
U(β) with Wz being specified as two different weight
functions Wz,1 and Wz,2 respectively. We will use
Wz,1 = W 0

z , and use W∞
z or W ∗

z as Wz,2 accord-
ing to the data structures. Let β̂Wz,k

be the solution to
Uk(β) = 0 (k = 1, 2). The proposed test statistic can
be expressed as

T = n(β̂Wz,1 − β̂Wz,2)
′Γ̂−1(β̂Wz,1 − β̂Wz,2),

where Γ̂ =
(
Γ̂ij

)
,

Γ̂ij = n−3∑
z
[2

∑
k<l<m

(Q̂
∗(i)
kl,zQ̂

∗(j)
km,z + Q̂

∗(i)
kl,zQ̂

∗(j)
lm,z

+Q̂
∗(i)
lm,zQ̂

∗(j)
km,z) +

∑
k<l

(Q̂
∗(i)
kl,zQ̂

∗(j)
kl,z )],

(12)
and Q̂∗(i)

kl,z is defined in the proof below.

Theorem 2 Under conditions for Theorem 1, if the
Clayton model is correctly specified, T converges
in distribution to χ2

p+1. That is, for a γ-level test,
we reject the null hypothesis if T > χ2

p+1,γ , where
Pr(χ2

p+1 > χ2
p+1,γ) = γ.

Proof: Under model (7), the distributions of β̂Wz,1

and β̂Wz,2 are centered around the same β∗. By the
results of Theorem 1, we have
√
n(β̂Wz,1 − β̂Wz,2) = n−3/2

∑
z

∑
i<j

Q̃∗
ij,z + op(1),

where Q̃∗
ij,z =

(
Q

∗(k)
ij,z

)
= I−1

1 Q̃1,ij,z − I−1
2 Q̃2,ij,z ,

Q̃m,ij,z =
(
Q

(k)
m,ij,z

)
, Im is Ĩ(β∗) with Wz replaced
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by Wz,m, and Q(k)
m,ij,z is Q(k)

ij,z with W̃z replaced by
W̃z,m (m = 1, 2). By the central limit theorem for U-
statistic and Slutsky’s theorem:

√
n(β̂Wz,1 − β̂Wz,2)

converges in distribution to a mean-zero multivariate
normal distribution with variance Γ which can be con-
sistently estimated by Γ̂ =

(
Γ̂ij

)
, with Γ̂ij defined in

(12). Therefore, T = n(β̂Wz,1 − β̂Wz,2)
′Γ̂−1(β̂Wz,1 −

β̂Wz,2) converges in distribution to χ2
p+1.

4 Numerical Studies

4.1 Simulations

We performed simulations to assess finite-sample per-
formances of the proposed methods. Three types of
covariates are considered: Z(k) affects the marginal
distribution of Tk for k = 1, 2 and Z affects the
association structure. For marginal models, we let
Tk = Z(k)µ + εk for k = 1, 2, where Z(k) was
generated from Bernoulli(0.5) for k = 1, 2, ε1 fol-
low exp(0.8) and ε2 follow exp(1), and set µ = 0.5.
For the model on association, we consider the Clay-
ton copula with α(Z) = exp(β0Z0 + β1Z1), where
Z = (Z0, Z1) = (1, 0)′ or (1, 1)′. Each covariate
group was generated with equal probability. We re-
port the results when Z and Z(k) (k = 1, 2) were
generated independently. The case of common covari-
ates (Z = Z(1) = Z(2)) produces similar results and
hence is not reported. The latter two data structures
were created by imposing a censoring or truncation
relationship between T1 and T2 respectively. Right
censoring is incorporated in the three data structures.
For bivariate censored data, we set C1 to be indepen-
dent of C2 and Ck|Z(k) = z ∼ zµ + U(0, 6). For
semi-competing risks data and truncation data, we set
C|Z(2) = z ∼ zµ + U(0, 6). More simulations
are conducted with marginal accelerated failure times
model and more covariate groups. The results are sim-
ilar and thus are omitted from the report here.

For bivariate censored data, the censoring pro-
portion of Tk (k = 1, 2) is around 0.16. For semi-
competing risks data, the censoring rate for T1 which
is subject to dependent censoring by T2 and indepen-
dent censoring by C varies from 0.11 (τ = 0.76,
Z(1) = 1, Z(2) = 0) to 0.88 (τ = 0.76, Z(1) = 0,
Z(2) = 1). For truncation data, the missing proportion
Pr(T1 > T2) and the censoring rate Pr(T2 > C|T1 ≤
T2) vary with τ , Z(1) and Z(2). Pr(T1 > T2) ≈ 0.06,
Pr(T2 > C|T1 ≤ T2) ≈ 0.16 when τ = 0.76,
Z(1) = 1, Z(2) = 0 and Pr(T1 > T2) ≈ 0.83,
Pr(T2 > C|T1 ≤ T2) ≈ 0.41 when τ = 0.76,
Z(1) = 0, Z(2) = 1.

Tables 1 summarizes the results of the proposed

estimator β̂. For each data setting, we applied two
weight functions W 0

z versus W∞
z or W ∗

z . Based on
1000 replications, we computed its root mean square
error (

√
SE) and the coverage probability of the nom-

inal 0.95 confidence interval (Cov). In general the
proposed estimator for the regression parameter has
nice performance in all the settings, and the 95% con-
fidence intervals have reasonable coverage probabili-
ties. The weight functionsW∞

z orW ∗
z results in better

estimation performance than the weight W 0
z .

Table 1: Simulation results.

n = 150 n = 300

Data W β0
√
SE Cov

√
SE Cov

β1
1 W 0

z 0.5 0.21 0.952 0.14 0.948
0.5 0.30 0.955 0.20 0.951
1 0.21 0.949 0.14 0.956
1 0.32 0.947 0.21 0.953

W∞
z 0.5 0.19 0.947 0.13 0.953

0.5 0.28 0.950 0.18 0.951
1 0.20 0.941 0.13 0.950
1 0.31 0.945 0.20 0.952

2 W 0
z 0.5 0.26 0.955 0.16 0.947

0.5 0.37 0.949 0.24 0.949
1 0.27 0.952 0.17 0.951
1 0.40 0.947 0.26 0.944

W∞
z 0.5 0.24 0.948 0.16 0.949

0.5 0.34 0.950 0.22 0.951
1 0.25 0.941 0.16 0.943
1 0.39 0.942 0.24 0.946

3 W 0
z 0.5 0.18 0.954 0.11 0.951

0.5 0.29 0.944 0.18 0.944
1 0.23 0.955 0.14 0.953
1 0.43 0.951 0.28 0.955

W ∗
z 0.5 0.15 0.951 0.09 0.946

0.5 0.24 0.943 0.14 0.943
1 0.18 0.952 0.10 0.953
1 0.36 0.945 0.21 0.961

Data: the type of data structure; W : the weight
function.

4.2 Otitis Media Data Analysis

We applied the proposed methods to the otitis media
clinical trial data [21] which belong to typical bivari-
ate censored data. The data set collected the informa-
tion of 78 children with age from 6 months to 8 years
who developed chronic otitis media effusion between
February 1987 and January 1990. Here (T1, T2) are
the times (in months) to failure of ventilating tubes
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surgically inserted into right and left ears respective-
ly and C1 = C2 is the time to the end of study. The
covariate Z is a binary variable with Z = 1 indicat-
ing that a subject was treated by oral antibiotic and
Z = 0 if the subject was assigned to a placebo control
group. The assignment for the treatment type was ran-
dom. Applying the log-rank test to examine whether
the treatment type affects the marginal distribution of
the time to failure of ventilating tubes, we found that
the result was significant (with p-value=0.0093) for
the right ear, but not significant (with p-value=0.659)
for the left ear. Without specifying the marginal re-
gression models, we investigated whether and how the
association between the failure times to two ears dif-
fers in the two treatment groups.

Applying the testing procedure discussed in Sec-
tion 3.1, T = 5.069 (d.f. = 2) which corresponds to
p-value=0.079. This implies that the Clayton mod-
el is still acceptable for this data set. Accordingly
we assume that θa(s, t;Z) = exp(β0 + β1Z), where
exp(β0) is the odds ratio for the baseline (place-
bo) group and exp(β1) represents the difference of
the odds ratio between the antibiotic group and the
baseline group. For weights W∞

z , the estimators
and the corresponding standard errors given in the
parentheses for β are β̂0=0.5966 (0.2068), β̂1=-0.4871
(0.2767), and β̂0 + β̂1=0.1095 (0.1838). Correspond-
ingly the odds for placebo and antibiotic groups are
exp(β̂0)=1.8159 and exp(β̂0 + β̂1)=1.1157 which are
both greater than 1 indicating positive association be-
tween T1 and T2 but only the former is significant.
The odds ratio between the two groups is exp(β̂1) =
0.6144 which is significant at 0.1 level providing some
evidence that the level of association differs in the two
groups, but which is not significant at 0.05 level.
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