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Abstract: Copula models are often used to model the dependence structure in bivariate failure-time data. We
consider a covariate effect regression method on the copula parameter for Archimedean copulas. The proposed
method can handle three different data structures, namely typical bivariate data, semi-competing risks data and
dependent truncation data. We derive large-sample properties of the proposed estimators, and study their finite-
sample performances via simulations and application to a well-known data set.
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1 Introduction

Let T7 and T» be a pair of continuous lifetime ran-
dom variables. The dependence structure between
them can be described the copula according to Sklar’s
theorem: F'(t1,t2) = C{Fi(t1), Fa(t2)}, where F' is
the joint cumulative distribution (or survival) function,
and F and F5 are corresponding marginal functions.
The copula function C : [0, 1]?> — [0, 1] summarized
the dependence information between 77 and 75.

Parametric copula models have been used for s-
tatistical inference in analyzing bivariate survival da-
ta subject to independent censoring [1, 2], semi-
competing risks data [3, 4, 5, 6, 7, 8, 9] and dependent
truncation data [10, 11].

When covariates are present, most analysis fo-
cused on the covariate effects on the marginal distri-
butions, and assume that the copula is constant across
different covariate values. Recently, a few work al-
lows the copula to change with covariates. The semi-
competing risks data marginal regression using es-
timating equations [9] and nonparametric maximum
likelihood estimation [12] allowed covariate-varying
copula. [13] considered the nonparametric estimation
of the covariate-varying Clayton copula parameter us-
ing local kernel methods for three types of bivari-
ate failure-time data in the following. Here we con-
sider parametric regression of the covariate-varying
Archimedean copulas parameter. To simplify the il-
lustration, external censoring is temporarily ignored
but will taken into account in Section 2.2.

Data Structure 1 - Typical failure-time data. There
is no specific relationship between 7 and 75 so that

ISBN: 978-960-474-380-3

41

possible observations fall in the region of {(s, ) : 0 <
s < 00,0 < t < oo}. Such data are suitable for
measuring the failure times occurred to different bio-
logical units such as twins, family members or paired
organs on the same person.

Data Structure 2 - Semi-competing risks data. In anal-
ysis of multiple events data, let 77 be the time to a
non-terminal event such as onset of a disease and T
the time to a terminal event such as death. Notice
that 75 is a competing risk for 77 but not vise ver-
sa. One can only observe (T} A Ty, To, I(T1 < Tv)).
Complete observations of (77,75) can only fall in
{(s,t) : 0 < s <t < oo}. Incomplete observa-
tions are those with T} > T5 in which the value of T5
is still observable.

Data Structure 3 - Dependent truncation data. As-
sume (77, T5) are observable only if 77 < T5. We say
T7 is subject to right truncation by 75 or T5 subject to
left truncation by 77. In an example of transfusion-
related AIDS, (71,7>) may refer to the incubation
time from infection to AIDS and the lapse time mea-
sured from infection to the end of study, respectively.
Only those who developed AIDS before the end of s-
tudy can be included in the sample.

In Section 2, we introduce the proposed method-
ology. Section 3 describes the simplified version un-
der Clayton copula. The resulting estimator is shown
to be asymptotically normally distributed. In addition
a method to check the Clayton association Assump-
tion is proposed. Section 4 studies the proposed esti-
mator through synthetic data and a real data set.
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2 The Proposed Approach

We propose to conduct the regression analysis through
time-varying local dependence measures. We first in-
troduce these measures. Then we derive an estimating
equation using such measures.

2.1 Time-varying Association Measures

For two correlated uniform variables U; and Uy on the
unit interval, their joint distribution can be defined as
the copula function

Co(ur,uz) = Pr(U; < up, Uz < ug),

where « measures the degree of associ-
ation and . i? related to Kendall’s tau as
T = 4y Jo Calur,uz)Cq(dur,dus) — 1. Lo-

cal dependence structure between U; and Us can be
described by the cross ratio function [14]:

_ {Ca(u1, ug) H{D1DyCo(u1, u2) }
{D1Co(u1,u2) H{D2Co (u1, u2) }
where D; means taking derivative respect to u; for

j = 1,2. Equivalently the above function can be writ-
ten as the local odds ratio function:

, (1)

9(711,712)

Pr(Aioj = 1|ﬁij = (u1,uz))
Pr(A?, = 0|U;; = (u1,u2))’

9(’&1, UQ) =

2

where A% = I{(Uli - U]_j)(UQi - UQ]') > 0} is the
concordance indicator for (Uy;, Ug;) and (U, Ugj),
which are independent replications of (Uy, Uz), and

Uij = (Uli V Ulj, Usi V UQj).
Conditional on the covariate value Z = z, the
copula structure on lifetime variables (77, 75) is

F.(t1,t2) = Co){F1:(t1), Fo2(t2) ), (3)

where F, is a joint function of (77,7%) and Fj . is
a marginal function for 7} for £ = 1,2. We fol-
low the conventions for the three data structures dis-
cussed in Section 1. For data structures 1 and 2,
Fk,z(tk) = PI‘Z(Tk > tk) (k = 1,2) and Fz(tl,tg) =
Pr,(1Ty > t1,7T, > t2); but for the third type,
Fl,z(tl) = PI‘Z(Tl < tl), F27Z(t) = PI‘Z(TQ > tg)
and Fz(tl,tg) = PI‘Z(Tl < t1,T5 > tQ) for0 <t <
ta < oo. The covariate effects on the marginal status
is reflected in F4 . and F7 .. In this paper, we focus
on the covariate effect on association which is char-
acterized by a(z). We propose to study «(z) through
0,. The 0, is defined as # in (2) conditional on Z = z,
and is related to a(z) through equation (1).

Since we can not directly observe f]z-j, we first
find the local odds ratio 6, on the original time scale.
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Let (11,1, Z;) (i = 1,...,n) be a random sample
of (T1,T>, 7). Assume that Z takes discrete values.
Conditional on Z; = Z; = z we can define A;; =
I{(T; — Th;)(T2 — T»;) > 0} which only involves
the original time variables. Then the value of A7,
which is defined under equation (2), can be known
from A;;. Specifically, A;; = Ag’j for the first two
data structures, and A;; = 1 — A, for the third data

structure. Based on A;;, we define éz (t1,12) as
PI’(AZ']' = 1|Tij = (t1,t2), Z; = Zj = z)
Pr(Aij = 0|Tij = (t1,t2), Zi = Zj = z)

“

where Tz'j (Th‘ A le,TQz‘ A ng) and hence

0,(t1,ta) = 0,(u1,uz) for the first two data struc-
tures; Tz'j = (le' V le,TQZ' A ng) and hence
éz(tl,tg) = 1/6,(u1,uz) for the third type. Here,
up = Fy.(t1) and ug = F5.(t2). Accordingly the
time-varying concordance probability

Fa(t1, ta) = 0. (t1, 12) /1 + 0.(t1, t2)]

denotes PI‘(AZ‘]‘ = 1|Tij = (tl,tQ), Z; = Zj = Z).

When the underlying copula function is specified,
we have explicit formula for 6, (u1,ug), then can de-
rive 7, (t1, t2) using (4) and (5). We can then estimate
the covariate effects on «(z) by estimating 7, (¢1, t2).
[15, 16] studied the estimation of time-varying associ-
ation measures 6 for bivariate survival data. Our focus
is different in that our objective is not in 6, but using
this to infer the covariate effect on a(z).

&)

2.2 Effect of External Censoring

Now we incorporate external censoring in the three
data structures which occurs due to drop-out or the
end-of-study effect. For the three data structures,
we use (Xli, X9, 014, 09, Zz) (Z =1,... ,77,) to de-
note observed data but the definitions depend on
the data type. For typical failure-time data, assume
that (77;, T5;) is subject to independent censoring by
(Cli,czi) such that X;; = Ty; N Ck; and 6y =
I(Ty; < Cy;) for k = 1,2. For semi-competing risks
data, assume that (77;, T5;) are subject to a common
external censoring variable C; so that X1; = T1; A
To; AN Cy, Xo; = To; AN C; and Oy = ](‘X]ﬂ = Tki) for
k = 1, 2. For the third type, we consider left truncated
and right censored data such that 75; may be censored
by an external censoring variable C;. Observed vari-
ables are X1; = Ty, Xo; = To; AN C;, 61; = 1 and
0o; = I(TQZ' < C@) subject to Xo; > X1; = T1;.

It is important to note that a random sample of
(Thi, Ta, Z;) (i = 1,...,n) is not available in the lat-
ter two data structures even without external censor-
ing. When censoring is present, the value of A;; may
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be unknown. Now we derive the condition that A;;
can be fully observed and provides unbiased informa-
tion about ﬁ'z(tl,tg). Let Tz'j = (TL'L'J‘,TQ’,L']'). The

for data structure 1, we define D;;(z) = I(T1, <
CLU,TQ’@]‘ < Cgﬂ'j,Zi = Zj = Z) where Ck,ij =
Chi N Cyj (k = 1,2). For data structure 2, D;;(z) =
I(Tl,ij < T2,ij < éij,Zi = Zj = Z), where
Cij = C; A Cj. For data structure 3, D;j(z) =
I(Tl,ij < TQ,Z‘]‘ < éij7Z’i = 4j = Z). For each
data structure, it is easy to see that the value of A;; is
known when D;;(z) = 1. In addition, define

ﬁz(tl,tg) = PI'(AZ']‘ = 1‘11’@' = (tl,tg),Dij(Z) = 1).

Then p,(t1,t2) = 7, (t1,t2) for all (¢1,t9) values in
the model range of (3). We will estimate the covariate
effect through p, (t1,t2).

2.3 Association Parameter Regression.

We consider a parametric model a(z) = «(z, §) with
parameter [ representing the covariate effect on the
association parameter. We consider the inference un-
der Archimedean copulas [17]:

Calur,u2) = ¢ {¢a(ur) + daluz)},  (6)

where the generating function ¢, (-) : [0,1] — [0, o0]
satisfies that ¢ (1) = 0, ¢/, (t) < 0 and ¢/ (t) > 0.
For analytic ¢, (-) (which is satisfied by all common
Archimedean copulas), the covariate effect model is
identifiable [18, 19].

For Archimedean copulas, the local association
measure 0(t,t3) only dependents on the joint func-
tion F, and not the marginal functions F4 . and
Fy.. Let O,(v) = —ve(v)/¢L,(v) for the first t-
wo data structures, and 0, (v) = —¢ (v)/[vel(v)]
for the third data structure. Then 0 (t,t2) =
Oa(2,8)F:(t1,t2)]. Hence by (5) we can denote the
regression model as

7~.‘-Z(tl,tQ) :77(2757’Yz)- (7)

Here the nuisance parameter v, = F,(t1,t2) is the
only time-varying component. Using the subsample
with Z = z, we can get standard nonparametric esti-

mation 4, = F, (t1,t2). We then find the least-squares
estimator 3 which minimize

UB) = 3. Sic i iWa(X1ij, Xo5) Dij(2)
[Aij = n(z, B, 72 (X115, X2,05))]}- -

Here T is a positive weight function. (X1 5, X2;)
is defined similarly as T';;, and depends on the da-
ta type. For the first two data structures, Xy ;; =
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Xii AN Xy (k= 1,2), and for truncation data, Xl,z’j =
X1; Vv ij and Xgﬂ'j = X9 A XQJ'. We use the weight
function W, o (1, x2) of the form,

Ty

Yr  I{X1; > min(a,z1), Xo; > min(b, x2), Z; = 2z}’
)

where n, is the sample size of 7 = z; a and b
are constants. With ¢ = b = 0, the function re-
duces to W2 = 1 which is the un-weighted case.
With ¢ = b = oo, the weight function becomes
W2 =mn: /30 I{Xy = @1, Xoy > 22, Z; = 2}
For truncation data, there is no information in the
wedge 11 > Tb, therefore, we consider alternative
weight function W} (z1,x2) = ny/ > I{X1 <
xl,Xgi Z CL'Q,ZZ' = Z}.

3 Simplification for Clayton Copula.
One type of Archimedean copulas is Clayton copula
Colur,ug) = (uj ™+ ud™ — l)i/(l_a) (> 0).

Under the Clayton family, the local odds ratio
0.(u1,uz) = a(z) is no longer time-varying. Hence
(7) can be simplified as 7,(t1,t2) = n(z,5), and
the estimation (8) no longer require estimation of the
time-varying nuisance parameter ..

We now derive the asymptotic properties of the
estimator B minimizing (8) under the Clayton copula
assumption. Let 8* be the true value of 5. We will
show that /3 is a consistent estimator of 3, and \/ﬁ(B —
[B*) converges to a multivariate normal distribution.
Let the list of possible association covariate values be
Z ={z,...,zK }. We assume the following technical
conditions:

(T1) n,/n converge to a constant 0 < ¢, < 1 for each
possible values z € Z.

(T2) The weight function W (u,v) has a uniformly
bounded deterministic limit W, (u, v).

(T3) The function 7(z, ) is twice differentiable a-
gainst parameters 3 with uniformly bounded partial
derivatives against S, k = 1,2,...,p. n(z,[) =
n(z,5*) for all z € Z only for § = (*. When
|B] = oo, m(z,8) — Oor 1.

(T4) Let I(,B) = (IU) with Iij =
E[-n20°U(8)/0B:08)). i = 1,2..pj =
1,2,...,p denote the Fisher information matrix. Let
U(f3) denote the statistic U () in (8) with the weight
function W, replaced by its deterministic limit W,.

Let I(3) = (fw) with U () replacing U() in the
definition of of I(3). We assume that the Fisher

information T (6*) is nonsingular at true parameter
value 8 = B*.



Advances in Applied and Pure Mathematics

Theorem 1 Under model (7) for Clayton copulas, the
estimator B minimizing (8) consistent. And \/ﬁ(ﬁ —
B*) converges in distribution to a multivariate normal
distribution with variance Y. which can be consistently
estimated by ¥ = I=1J(I'Y, where I = (fw) and

~

J = (jz]) are matrices of dimension p X p with

I.: 1 0°U (6)‘ .
1 TL2 8B 85] B=p3"

(10)

jij: %Z[ Z (leszmz+lez lmz

z k<l<m

+Ql(;r)L,le(cjm,z) + El(le,szl,z)}’
1)
fo)z = QWZ(Xl,ija{(z,z’j)D 169
(i =0z BN=55) ] 5p
Proof: We first show that the statistics n~2U(3) in

(8) has a positive limiting deterministic function in j3
that is minimized at 5 = (*. Note that U([3) is

=3 WXy, Yig) Dij(2)[Aij — (2, B)]°.
z 1<g

Then

n2(U(8) — T(8)] < %Zs% V7 (1, 0) — W (, )|

which by condition (T2) converges to zero in proba-
bility. Therefore we only need to show that the limit
of U(p) in probability is positive and is minimized
at 5 = F*. Under the model assumptions, for those
Zi = Z; = z and D;j(z) = 1, Ay; is a Bernoulli
random variable with Pr(A;; = 1) = n(z, 8*). Hence
E{[Ai; —n(z,B)P|Zi = Zj = 2, Dy(z) = 1} =

(2, B9)[1=n(z, )]+ [n(z, B) = n(z, B)]*. So this
decompose n E{ZK] (va YZJ)D i(2)[Aij —
n(z, 8)]?} into two terms, by the law of large number-
s, converges to positive constant d, and e (/) respec—
tively. Then E[n=2U(8)] — Y., d. + 3, c2e. (),
which is minimized if and only if ), CQQZ (5) =0
when = 3* by condition (T3). By the law of large
numbers, we can see that n~20 (B) converges to its
expectation. Hence n~2U(/3) also converges to this
limit which is uniquely minimized by 8 = 5*.

The consistency of B then comes from the unifor-
m convergence of n~2U(3) within a neighborhood of
8 = B* and the condition (T3).

Let w(8) = VgU(B) denote the gradient of
U(/3). Since the local minimizer of U(f) also solves
u(B) = 0, without loss of generality, we can take 3 as
a consistent root of () = 0. Let @(/) denote u(3)
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with W, replaced by W.. Under model (7), the limit
of E[u(p*)]is Elu(f*)] = 0. And the limit of I(3*)
is the nonsingular matrix I(5*). So without loss of
generality, by Taylor expansion:

V(B =) = [L(B) 0 u(8") + 0,(1)
= (n72 X, T, QL) + opl1),

where Q = 2W.(Xij, Vi) Dij(2)[As

n(z, )] (— Vgn(z B)|s=p+). By the central lim-
it theorem for U-statistic and Slutsky’s theorem:
V(B — B*) converges in distribution to a multi-
variate normal distribution with variance > which is
consistently estimated by ¥ = [~1J(I~1), where [
and [ are defined in (10) and (11). O

3.1 Checking the Clayton Assumption

We propose a generalized version of Shih [20]’s test to
verify the Clayton assumption for all three data struc-
tures. Let U1(53) and Us(3) follow the same form as
U () with W, being specified as two different weight
functions W, 1 and W, 5 respectively. We will use
W.1 = W0 and use W2° or W} as W, > accord-

ing to the data structures. Let ﬁW% . be the solution to
Uk(B) = 0 (k = 1,2). The proposed test statistic can
be expressed as

T = n(BWz,l

where I = (f‘ij),

- BWZ,Z)/f_l(BWZ,l - BWz,z)’

Ax(4)
kmz) + Z( klZszl z)}
| (12)
and ngg is defined in the proof below.
Theorem 2 Under conditions for Theorem 1, if the

Clayton model is correctly specified, T' converges
in distribution to X12? +1. That is, for a v-level test,

we reject the null hypothesis if T > X]Q)_Hﬁ, where
Pr(X;%-H > X?)—i—l,'y) =7

Proof: Under model (7), the distributions of BWZ,I

and BWZ’Q are centered around the same 5*. By the
results of Theorem 1, we have

Vn(Bw. ., n2Y N Qs+ 0p(1)
z i<j
where Q;, = (Q:j(fz)) =1 lQl g2
(k)
Qm,ij,z = (Qm ij, z) m is I

- BWz,z) =

_IQQ,ij,z,
) with W, replaced
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by W, m, and ng?ij72 is Qgc)z with W, replaced by
W, m (m = 1,2). By the central limit theorem for U-

statistic and Slutsky’s theorem: \/H(BW%1 - BWZ,Z)
converges in distribution to a mean-zero multivariate
normal distribution with variance I" which can be con-
sistently estimated by I' = (Fij) , with I';; defined in

(12). Therefore, T' = n(BAWZ’1 — BWZYZ)’IA“*l(BAWL1 —
Bw. ,) converges in distribution to x2, ;.

4 Numerical Studies

4.1 Simulations

We performed simulations to assess finite-sample per-
formances of the proposed methods. Three types of
covariates are considered: Z(*) affects the marginal
distribution of Ty for k¥ = 1,2 and Z affects the
association structure. For marginal models, we let
T, = Z(k)u + e, for k = 1,2, where Z*F) was
generated from Bernoulli(0.5) for k = 1,2, &1 fol-
low exp(0.8) and e3 follow exp(1), and set p = 0.5.
For the model on association, we consider the Clay-
ton copula with a(Z) = exp(BoZo + S121), where
Z = (Zy,Z1) = (1,0) or (1,1). Each covariate
group was generated with equal probability. We re-
port the results when Z and Z(*) (k = 1,2) were
generated independently. The case of common covari-
ates (4 = Z W=z (2)) produces similar results and
hence is not reported. The latter two data structures
were created by imposing a censoring or truncation
relationship between 77 and 75 respectively. Right
censoring is incorporated in the three data structures.
For bivariate censored data, we set C to be indepen-
dent of Cy and C|Z®) = 2 ~ zu + U(0,6). For
semi-competing risks data and truncation data, we set
C|1Z?® = 2z ~ zu + U(0,6). More simulations
are conducted with marginal accelerated failure times
model and more covariate groups. The results are sim-
ilar and thus are omitted from the report here.

For bivariate censored data, the censoring pro-
portion of Ty (k = 1,2) is around 0.16. For semi-
competing risks data, the censoring rate for 77 which
is subject to dependent censoring by 75 and indepen-
dent censoring by C varies from 0.11 (= = 0.76,
zZM =1,2? = 0)t00.88 (r = 0.76, ZH) = 0,
Z2) = 1). For truncation data, the missing proportion
Pr(T; > T>) and the censoring rate Pr(Ty > C|T} <
Ty) vary with 7, Z() and Z). Pr(T} > Ty) ~ 0.06,

Pr(To > C|Ty < Ty) =~ 0.16 when 7 = 0.76,
ZW = 1,73 = 0and Pr(Ty > Ty) ~ 0.83,
Pr(T, > C|Ty < Tp) =~ 0.41 when 7 = 0.76,

7MW =0, 723 =1,
Tables 1 summarizes the results of the proposed
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estimator B For each data setting, we applied two
weight functions W2 versus W2° or W}. Based on
1000 replications, we computed its root mean square
error (v/SE) and the coverage probability of the nom-
inal 0.95 confidence interval (Cov). In general the
proposed estimator for the regression parameter has
nice performance in all the settings, and the 95% con-
fidence intervals have reasonable coverage probabili-
ties. The weight functions W2° or W} results in better
estimation performance than the weight W9.

Table 1: Simulation results.

n = 150 n = 300

Data | W | By | VSE Cov | VSE Cov
b1

1 WB 051021 0952 | 0.14 0.948

0.5 030 09551 0.20 0.951

1 0.21 0949 | 0.14 0.956

1 1032 0947 | 021 0.953

W2 1051019 0947 | 0.13 0.953

05028 0950 | 0.18 0.951

1 | 020 0941 ] 0.13 0.950

1 {031 0945 | 0.20 0.952

2 WS 051026 0955 | 0.16 0.947

051037 0949 | 0.24 0.949

1 1027 0952 0.17 0951

1 {040 0947 | 0.26 0.944

W2 1051]024 0948 | 0.16 0.949

051034 0950 | 022 0.951

1 1025 0941 | 0.16 0.943

1 1039 0942 | 0.24 0.946

3 Wg 0.51]0.18 0954 | 0.11 0.951

051029 0944 | 0.18 0.944

1 1023 0955 | 0.14 0.953

1 | 043 0.951 | 0.28 0.955

Wi 105]015 0951 |0.09 0.946

051024 0943 | 0.14 0.943

1 [0.18 0952 | 0.10 0.953

1 036 0945 | 0.21 0.961

Data: the type of data structure; W : the weight
Sfunction.

4.2 Otitis Media Data Analysis

We applied the proposed methods to the otitis media
clinical trial data [21] which belong to typical bivari-
ate censored data. The data set collected the informa-
tion of 78 children with age from 6 months to 8 years
who developed chronic otitis media effusion between
February 1987 and January 1990. Here (77,7%) are
the times (in months) to failure of ventilating tubes
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surgically inserted into right and left ears respective-
ly and C; = () is the time to the end of study. The
covariate Z is a binary variable with Z = 1 indicat-
ing that a subject was treated by oral antibiotic and
Z = (0 if the subject was assigned to a placebo control
group. The assignment for the treatment type was ran-
dom. Applying the log-rank test to examine whether
the treatment type affects the marginal distribution of
the time to failure of ventilating tubes, we found that
the result was significant (with p-value=0.0093) for
the right ear, but not significant (with p-value=0.659)
for the left ear. Without specifying the marginal re-
gression models, we investigated whether and how the
association between the failure times to two ears dif-
fers in the two treatment groups.

Applying the testing procedure discussed in Sec-
tion 3.1, T = 5.069 (d.f. = 2) which corresponds to
p-value=0.079. This implies that the Clayton mod-
el is still acceptable for this data set. Accordingly
we assume that 6,(s,t; Z) = exp(5y + f1Z), where
exp(fp) is the odds ratio for the baseline (place-
bo) group and exp(/3;) represents the difference of
the odds ratio between the antibiotic group and the
baseline group. For weights W2°, the estimators
and the corresponding standard errors given in the
parentheses for 3 are 35=0.5966 (0.2068), 3;=-0.4871
(0.2767), and Bo + B1=0.1095 (0.1838). Correspond-
ingly the odds for placebo and antibiotic groups are
exp(B0)=1.8159 and exp(By + 1 )=1.1157 which are
both greater than 1 indicating positive association be-
tween 77 and 75 but only the former is significant.
The odds ratio between the two groups is exp(Bl) =
0.6144 which is significant at 0.1 level providing some
evidence that the level of association differs in the two
groups, but which is not significant at 0.05 level.
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