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Abstract: Traditionally, the constant coverage probability estimator, confidence

coefficient, is used to report the confidence of a multivariate normal confidence set.

Robinson (1979), Lu and Berger (1989) and Robert and Casella (1994) all showed

that there are certain estimators better than the confidence coefficient when the

number of unknown parameters is greater than 4. In this paper some other better

estimators are provided.
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1. Introduction

Let X = (X1, . . . ,Xp)′ be a random vector with distribution N(θ, Ip), where
θ = (θ1, . . . , θp)′. The usual 1 − α confidence set for θ is

CX = {θ : |X − θ| ≤ c}, (1)

where c satisfies P (θ ∈ CX) = 1 − α. The coverage function of this confidence
set is defined to be

I(θ ∈ CX) =

{
1, if θ ∈ CX ,

0, otherwise.
(2)

Traditionally we use the confidence coefficient 1−α, the constant coverage prob-
ability estimator, to report the confidence of CX . However, 1 − α is a data-
independent confidence report. Kiefer (1977) pointed out that a better approach
is to provide a data-dependent confidence report if there exists one which is better
than the confidence coefficient. In the following, we give an example to explain
why a data-independent estimator is not feasible in some situations.

Assume that the possible values of random variable Y are η − 1 and η + 1,
where η is an unknown parameter, and the probabilities assigned to the possible
values of Y are

p(Y = η − 1) = p(Y = η + 1) =
1
2
.
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Suppose we have two observations y1 and y2 of Y . A usual confidence interval of
η based on these two observations is

Cy =
{

η :
∣∣∣∣y1 + y2

2
− η

∣∣∣∣ <
1
2

}
.

When y1 �= y2, then (y1 + y2)/2 = η, which implies that Cy covers the parameter
η and I(η ∈ Cy) = 1. In this case, the confidence report should be 1. On the
other hand, when y1 = y2, then (y1 + y2)/2 = η + 1 or η − 1, which implies
that Cy does not cover the parameter η and I(η ∈ Cy) = 0. Hence, a reasonable
confidence report in this case is 0. We see that the confidence report for Cy

should depend on the observations, and a data-dependent estimator is better for
estimating the confidence than a data-independent one. Moreover, this simple
example not only explains why we should consider data-dependent confidence
reports but also demonstrates that reporting the confidence of (1) is equivalent
to estimating (2).

For the confidence set (1), Robinson (1979) showed that 1−α+d/(1+ |X|2)
is better than 1−α under squared error loss if p = 5 and d is small enough. That
is, when p = 5 and d is a sufficiently small positive constant,

E(1 − α +
d

1 + |X|2 − I(θ ∈ CX))2 < E(1 − α − I(θ ∈ CX))2

for all θ. Lu and Berger (1989) showed that when p ≥ 5, the estimator

1 − α +
a

b + |X|2 (3)

is better than 1 − α under squared error loss for b large enough and a small
enough. Robert and Casella (1994) showed that 1 − α is inadmissible for p ≥ 5
under squared error loss by an approach different from the above two papers,
and used statistical simulation to show that

β(X) = 1 − α +
e

|X|2

is better than 1 − α, where e is some positive constant.
When p ≤ 4, Brown and Hwang (1990) showed that 1 − α is an admissible

estimator. Wang (1998) proved a similar result that the constant coverage prob-
ability estimator is admissible for reporting certain confidence intervals when
the number of unknown parameters is smaller than 5. Moreover, Wang (1997)
showed that the constant coverage probability estimator is inadmissible in re-
gression models when the number of slope parameters is greater than 5.
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In this paper, we consider estimators

rn(X) = 1 − α +
n∑

i=1

ai

(b + |X|2)i , n ≥ 1, (4)

where ai and b, i = 1, . . . , n, are some positive constants. We show that rn(X)
is better than rn−1(X), n ≥ 2, under squared error loss, provided p > 2(n + 1).

2. Main Results

The fact that the estimator (3) is better than 1 − α can be explained from
the empirical Bayes point of view. For X ∼ N(θ, Ip), a conjugate prior for θ is

θ|τ ∼ N(0, τ2Ip),

where τ ∈ R. Using |X|2/ζ to estimate 1 + τ2, the empirical Bayes estimator of
I(θ ∈ CX) with respect to the prior is

P (θ ∈ CX) = F
p, ζ2

|X|2−ζ

(c +
ζc

|X|2 − ζ
), (5)

where ζ is some positive constant and Fp,g(·) is the distribution function of the
non-central chi-square random variable with p degrees of freedom and noncen-
trality parameter g. A Taylor expansion gives

P (θ ∈ Cx) � 1 − α +
k1

|X|2 − ζ
+

k2

(|X|2 − ζ)2
+

k3

(|X|2 − ζ)3
+ ..., (6)

where ki are some constants. Based on the first order Taylor expansion, (3) is
obtained. Similarly by using n terms, we derive the estimators in (4).

Theorem 1. For n ≥ 2, p > 2(n + 1),

a1 < nE{(X1 − θ1)2[1 − α − I(|X − θ| ≤ c)]}[p − 2(n + 1)] (7)

and
∑n

i=2 ai < ∞, there exists a b0 such that if b > b0,

Eθ[rn(X) − I(|X − θ| ≤ c)]2 < Eθ[rn−1(X) − I(|X − θ| ≤ c)]2, for all θ.

Before we prove Theorem 1, we need the following lemma.

Lemma 1.

(b + |z + θ|2)−i = (b + |θ|2)−i − 2i
p∑

j=1

zj(b + |θ|2)−i−1θj

+2i(i + 1)
p∑

j,k=1

zjzk(b + |θ|2)−i−2θjθk − i
p∑

j=1

z2
j (b + |θ|2)−i−1

+o((b + |θ|2)−i−1),
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where z = (z1, . . . , zp)′ and θ = (θ1, . . . , θp)′.

Proof. By Taylor expansion (b → ∞).

Proof of Theorem 1. By a straightforward calculation,

E[rn−1(X) − I(|X − θ| ≤ c)]2 − E[rn(X) − I(|X − θ| ≤ c)]2

= −2E[rn−1(X) − I(|X − θ| ≤ c)]
an

(b + |X|2)n − E(
a2

n

(b + |X|2)2n
).

Replacing X − θ by Z = (Z1, . . . , Zp)′ where Z ∼ N(0, Ip), the last expression is
equal to

−2E[1 − α − I(|Z| ≤ c)]
an

(b + |Z + θ|2)n − 2E
n−1∑
i=1

(
aian

(b + |Z + θ|2)i+n
)

−E(
an

2

(b + |Z + θ|2)2n
). (8)

By Lemma 1 together with E{Zi[1 − α − I(|Z| ≤ c)]} = 0,
E{ZiZj[1 − α − I(|Z| ≤ c)]} = 0 (i �= j), and E{Z2

i [1 − α − I(|Z| ≤ c)]} > 0
(both functions are increasing in Z2

i and hence the covariance is positive), (8)
becomes

2an

(b + |θ|2)n+2
{n|θ|2[kp − 2(n + 1)k] + knpb − a1(b + |θ|2)

+an(
n∑

i=2

ai + 1)o(
1

(b + |θ|2)n+1
)}

=
2an

(b + |θ|2)n+2
{|θ|2{nk[p − 2(n + 1)] − a1} + b(knp − a1)

+an(
n∑

i=2

ai + 1)o(
1

(b + |θ|2)n+1
)}, (9)

where k = E{Z2
1 [1 − α − I(|Z| ≤ c)]}. The fact that the error term is o((b +

|θ|2)−n−1) follows from an argument similar to the one that was used to derive
(2.9) of Hwang and Brown (1991). Therefore, there exists a b0 such that the
expression at (9) is positive for all θ if b ≥ b0, p > 2(n + 1), a1 < nk[p− 2(n + 1)]
and

∑n
i=2 ai < ∞.

When n = 1, we define r0(X) = 1 − α. Then by a similar argument,

E[r0(X) − I(|X − θ| ≤ c)]2 − E[r1(X) − I(|X − θ| ≤ c)]2

=
2a1

(b + |θ|2)3 {k[|θ|2(p − 4) + pb] − a1(b + |θ|2)} + o(
a1

(b + |θ|2)2 ). (10)
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Hence when p ≥ 5, r1(X) is better than r0(X) if a1 is small enough and b is
large enough. From Theorem 1, (7) provides an upper bound for a1 in rn. Also
from (10), k(p − 4) is an upper bound for a1 in r1. Thus, by straightforward
calculation, for p ≥ 8, the upper bound for a1 in r2 is larger than that for a1

in r1. Some upper bounds for a1 are provided in Table 1. The confidece set in
Table 1 is chosen such that the confidence level 1 − α is 0.8.

Table 1.

p 8 10 12 15

upper bound for a1 in r1 0.61 0.79 1.01 1.09

upper bound for a1 in r2 0.61 1.05 1.51 1.78

3. Simulation Results

Although Robinson and Lu and Berger showed that 1−α+d/(1+ |X|2) and
(3) are better than the confidence coefficient in estimating (2), respectively, they
did not specify the values of d, a and b in their estimators. Robert and Casella
specified the value of e in β(X). I have done some simulations(not reported here)
to compare the estimator (3) with β(X). These results reveal that β(X) is better
than (3). Hence, in the following, we only compare the risks of our estimator,
when n = 2, with those of Robert and Casella and with 1 − α.

Let R(r(X), θ) denote the risk E[r(X) − I(|X − θ| ≤ c)]2, where r(X) is an
estimator of (2). Table 2 compares the risks of r2(X) with those of β(X) and
1 − α for p = 8, c = 3.33 (1 − α = 0.8), where a1, a2 and b in r2(X) are 0.1, 9
and 4, respectively, and e in β(X) is 0.443. Note that the value of e in β(X) is
suggested by Robert and Casella.

Table 2.

|θ| 0 1 2 5 10
R(r2(X),θ)
R(β(X),θ) 0.980 0.982 0.988 0.990 1.000

R(r2(X),θ)
R(1−α,θ) 0.930 0.936 0.958 0.990 1.000

(100,000 replications)

Table 3 gives the results when p = 15 and c = 4.42 (1−α = 0.8), where a1,
a2 and b in r2(X) are 0.1, 27 and 6, respectively and e in β(X) is 0.919. The
value of e is also suggested by Robert and Casella.
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Table 3.

|θ| 0 1 2 5 10
R(r2(X),θ)
R(β(X),θ) 0.980 0.982 0.984 0.990 1.000

R(r2(X),θ)
R(1−α,θ) 0.943 0.953 0.962 0.990 1.000

(100,000 replications)
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