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Abstract

In the hypothesis testing problem, a most common used evidence against the null hypothesis
is the p-value. Although there have been many Bayesian criticisms leveled at p-value, Hwang
et al. (Ann. Statist. 20 (1992), 490) show the adequacy of using p-value as evidence against the
null hypothesis by considering testing as an estimation problem. However, when the
parameter space is not the natural space, Woodroofe and Wang (Ann. Statist. 28 (2000) 1561)
show that the usual p-value derived by the N-P test is not appropriate to be the evidence
against the null hypothesis for the Poisson distribution from an estimation point of view and
provide a modified p-value. Although this modified p-value is admissible, it is not the
admissible estimator which can dominate the usual p-value. In this paper, we concentrate on
the simple hypothesis versus simple alternative hypothesis testing problem. Admissible
estimators which dominate the usual p-value are provided.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

P-value is a well-used measure of evidence against the null hypothesis in
hypothesis testing. Although there are many Bayesian and paradox criticisms leveled
at p-value (e.g. [1-3,7]) some good properties of p-value are demonstrated in e.g.
(Refs. [5,6,9]). In this paper, we will focus on the complete class of decision rules in
the terminology of Hwang et al. [6], which demonstrate some interesting properties
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of p-value by treating the hypothesis testing problem as an estimation problem rather
than a decision making problem. In hypothesis testing, assume that the null and
alternative hypotheses are

Hy: 0e®y versus H;: e,

where © and @, are two subsets of the natural parameter space Q and @y () @, =
¢. Let I(0€ @) denote the indicator function. Schaarfsma et al. [9] and Hwang et al.
[6] suggest that the truth or falsity of a statistical hypothesis Hy can be discussed by
estimating the indicator function I(6e®,) with squared error loss. Consider the
squared error loss function

L(0,r) = E(r(x) — I(0€6y))*, (1)

where r(x) denotes an estimator for I(6€®,). In general, the p-value derived by a
reasonable test is a sensible estimator for I(0e®,) because H, is rejected
(I(0€e®y) = 0) or accepted (I(0€®) = 1) when p-value is too small or too large.

Hwang et al. [6] established some necessary and sufficient conditions for the
complete class in the one-sided testing and two-sided testing problems when @ =
©;. The p-value is shown to be admissible in the normal, binomial, and Poisson cases
for the one-sided hypothesis testing problem in their paper. But they stated the case
0, #0; was not directly dealt with in their paper although some results can be
extended to this case. The parameter space considered in their paper is the natural
space including all possible values of parameter. Woodroofe and Wang [11] revealed
a controversial concept about the admissibility of the p-value when the parameter
space is restricted to some subset of the natural parameter space. It is shown that the
usual p-value is inadmissible under the loss function (1) for the Poisson distribution
if the parameter space is a strict subset of the natural space. This inadmissibility
result also discloses the fact that the usual p-value might not be admissible when the
parameter space is not the natural space in other exponential distributions. A
modified p-value conditioning on an ancillary statistic is provided in [8,7]. This
modified p-value is an admissible estimator for I(0e®,), however, it is not an
admissible estimator which can dominate the usual p-value. Finding an estimator
dominating the usual p-value for this case is a difficult problem although we know
that better estimators exist. In this paper, we concentrate on the case that ® and @,
contain one point, respectively, which is a situation of @;# @ or a case that the
parameter space only contains two points. The admissibility results of Hwang et al.
[6] can not extend to this simple hypothesis versus simple alternative hypothesis
testing problem. A sufficient and necessary condition for an admissible estimator
and improved estimators are provided in Section 2. The simple hypothesis versus
simple alternative testing is adapted in many practical circumstances: exampling
products produced from machine A or machine B, and testing if the fuses produced
by a new process average 100 h service life more than that from the old
process. Moreover, substantial improvement of the improved estimator is present
in Section 3.

Beside simple hypothesis versus simple hypothesis testing, composite hypotheses
testing is related to this problem. The results in this paper can not apply to composite
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testing. The one-sided testing problem for Poisson distribution has been considered
by Woodroofe and Wang [11], and the other one-sided testing problems for location
families have been discussed in Wang [10].

2. Admissible p-value

In this section, we focus on the simple hypothesis versus simple alternative
hypothesis testing problem for the exponential family. Without loss of generality,
let X be the random variable with density function k(x)c(0)e”™’. Then
T(x) is a sufficient statistic of 6 based on X and assume that the density function
of T'(x) is

Consider the testing problem of the hypotheses

Hy: 0 =0y versus H;: 0 =0,.

We focus on estimating

1(0 = 0) (2)

in this paper. An estimator r(¢) is admissible for estimating (2), if there does not exist
another estimator /(¢) such that

Eo(r(t) —1(0 = 00))*=Ep(¥ (t) —1(0 = 0p))* for 6=0, and 60=0,

and the strict inequality holds for at least one 0. Theorem 1 will give a necessary and
sufficient condition of an admissible estimator for estimating (2). By applying the
necessary and sufficient condition in Theorem 1, it is shown that the usual p-value is
inadmissible in Theorem 2. The admissible estimators which dominate the usual
p-value are provided in Theorem 3.

Theorem 1. For estimating (2), assume that 0y<0,. Let ¢ be an admissible estimator
under the loss function (1). Then

(1) ¢ is a nonincreasing function and there exists a set [t , t>] such that 0< ¢(t) <1 for
all y<t<ty, ¢(t) =1 for t<ty and ¢(t) =0 for t=1,.
(1) There exists a positive constant m such that
mfy, (t
by =0
mfo, (1) +/o, (1)

for all t<t<t,.

Proof. The admissibility criterion considered in this paper only involves two points
{09, 0:}. Hence, without loss of validity, we can assume that the parameter space
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Q= Qy ={6,06,}. Thus, according to Theorem 4.14 of Brown [4], if ¢(¢) is an
admissible estimator for I(6 = #6), then there exists a sequence m; of prior
distribution supported on 6, and 6, such that

On, (1) > ¢(2) ace.,

where J,, denotes the Bayes estimator for n;. Hence there exists a sequence (7;1, 72)
of prior distributions such that

Jo, ()i (0o)

o) = 0 0 (00) + o (07 01)
— bm (Go)eeotn 1(00)
i»w ¢(0p)eh'm; (0p) + c(01)e mn(0y)
= lim i1 (0o) . (3)
i»0 ;1 (00) + c(01)/c(0g)el@r =0tz (0))

By Eq. (3), ¢(¢) is a nonincreasing function because 6; — 6y > 0. Hence there exists an
interval [71,1,] such that ¢(z) =1 for t<ty, ¢(t) =0 for t=1, and 0<¢(r)<1 for
t) <t<t,. Rewrite the right-hand side of (3) as

1(00)
I f9n( )z; ()0
lin; g it (6o)
foo( );h 0)) +f01( )
i1(0
o ()l 0 25

~foo(o) Jim 2O ()

lim;_, o Z;Eg‘:; exists and is greater than zero because 0<¢(f)<1. Therefore,
= lim;, o n"gz‘” and the proof is completed. [

Remark 1. In the other case 0y>0;, Theorem 1 is valid if ¢ is changed to a
nondecreasing function and ¢(¢) = 0 for t<t;, ¢(z) = 1 for =1, and 0< ¢(¢) <1 for
Hh<tsn.

fo (T )

Theorem 2. For estimating (2), assume that 0y <0y, the usual p-value Py, ( D >£§1 8
0 0

—

derived by the N—P test is inadmissible under the loss function (1).

Proof. According to Theorem 1, if Py, (/O'E ;?2' Ei;) is an admissible estimator, then
0

there exists a positive constant m such that

le(T) fﬁl(t) _ mf@o(t)
Fo (ng(T) >f90([)> B mfgo(t) +f9| (I)

for all t; <t<ts. (4)
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Modify Eq. (4) such that

! Jo, (1)
m = (F(Y<ﬁ"(t)) - l)feo(f) for all 1; <1<y, (5)

N0

f(l

where Y denotes the random variable 7 Slnce (5) holds all interior points, F(y) =

p + for 0<F(y)<1. Hence the usual - value is admissible only in the case that the

cumulative distribution function is the form F(y) =i for O<F (y)<1. The
forO<F(y)<1.

distributions of the exponential families are not the form F(y) = .= 5

Thus, the proof is completed. [

Theorem 3. For estimating (2) and 0y <0, let my and m, be two positive constants such

that
f()l T) f()l t N m(lﬁ)o(t)
E90 |:( QHU T) >f90 t ) m0f9o(l) +j:91 (0)
f()l (T f(h (t) me()o(l)
< (= 2) s s )
—0 (6)
and
Jo.(T) _fo () mufo, (1)
a | (P (G 0) i )
f91(T) f(’l(t) mlfgr)(Z)
g (P% Cmm %(r)) o) + /o M
=0, (7)
then my<m; and
I’m(l) _ mfﬁo(t) (8)

mfo, (1) + fo, (1)’

where mg<m<my, is an admissible estimator dominating the usual p-value derived
from N-P test under the loss function (1).

Proof. Let 0 = 0y, then
2
A—E, <P90 (f;"' (1) Jon (l)> 0= 90)) gy (r(1) — 1(0 = 05))?

)
: (P"“ @gi %Zlgg) * mfeog%f}e, 0 2)] | ®)
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Let 6 = 0, then

2
B =E), (P()O (J;Z‘ (7) >f01 (t)) —1(0 = 00)> —Ey, (rm(1) — 1(0 = 0))?

_ f91(T) f9|(t) . mfeo(t)
=% |:<P90 bo (T) 2]?)1» (l>> mfbo (t) +f01 <I)>
f01(T) f()l(t)) mf()n(t) ):|
<(ra (PR ) e ) 1o
By Theorem 1, an admissible estimator for 7(0 = 0y) should be the form of (8) for

some constant m. From Theorem 2, the usual p-value Py, (%>%> can not be
0 0

expressed as (8), and thus is inadmissible. The m in the improved estimator (8)
should not let 4 and B be smaller than zero and at least one is greater than zero. In
(9), 4 is negative or positive when m = 0 or oo, respectively. Since A is a continuous
function of m, there exits a constant m such that 4 equals to zero when m = my and
A>0 for all m>my. By a similar argument as above, we can deduce that there must
exist a constant m; such that B equals to zero when m = m; and B>0 for all m<m;.
Thus my must be smaller than m;, otherwise, admissible estimators dominating the
usual p-value do not exist. Thus for my<m<m;, A and B are both positive. The
proof is completed. [

Theorem 3 provides all admissible estimators dominating the usual p-value. For a
given distribution, we have to calculate my and m first. Tables 1 and 2 will provide
mg and m; for testing the mean, and the variance of a normal distribution.

Moreover, the result in Theorem 3 can extend to other distributions outside of
exponential families under some conditions.

Theorem 4. Assume that fy(t) in Theorem 3 denotes the density function of a
distribution Fy(t) which is not an exponential family. If my and m,, satisfying the Egs.
(7) and (8), also satisfy mo<my, then ry,(t), where mo<m<my, is an admissible
estimator dominating the usual p-value derived from N—P test under the loss function
(1) for the distribution Fy(t).

Proof. By a similar argument as in Theorem 3, we also can create better estimators
dominating the usual p-value for other distributions if my and m; in (7) and (8)
satisfy mo<m,. This condition can guarantee that there exists r, (), mo<m<my,
dominating the usual p-value. For exponential family, the condition my<m holds
directly from Theorems 2 and 3. [

Theorems 5 and 6 specify some relationship between |0y — 0| and m;, i=1,2.
Theorem 5. In Theorem 3, if x is a normal random variable with an unknown mean 0

and variance 1, then my in Theorem 3 only depends on the value |0y — 01| and m, in
Theorem 3 only depends on the value (6y — 6,).
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Table 1
00 — 91 my m 00 — 91 my m
0.2 0.721399 1.13248 -0.2 0.721399 1.13248
0.4 0.69022 0.952231 -0.4 0.69022 0.952231
0.6 0.640771 0.800931 —-0.6 0.640771 0.800931
0.8 0.57662 0.667737 —-0.8 0.57662 0.667737
1 0.502397 0.548704 —1 0.502397 0.548705
1.2 0.423315 0.442924 —-1.2 0.423315 0.442925
1.4 0.344573 0.350494 —1.4 0.344573 0.350499
1.6 0.270707 0.271543 —-1.6 0.270707 0.271548
1.8 0.205109 0.2058 —1.8 0.205109 0.2058
2 0.149785 0.15249 -2 0.149785 0.152489
2.2 0.105369 0.110422 -2.2 0.105369 0.11042
2.4 0.0713745 0.0781199 2.4 0.0713745 0.0781248
2.6 0.0465377 0.053992 -2.6 0.0465377 0.053991
2.8 0.0291996 0.0364428 2.8 0.0291996 0.0364382
3 0.0176261 0.0240198 -3 0.0176261 0.0240207
32 0.0102344 0.0154559 -3.2 0.0102344 0.0154594
34 0.00571505 0.00971459 -34 0.00571505 0.00971201
3.6 0.00306888 0.0059594 -3.6 0.00306888 0.00595962
3.8 0.00158449 0.00356744 -3.8 0.00158449 0.00356889
4 0.000786514 0.00208646 —4 0.000786514 0.00208474
4.2 0.000375318 0.00119047 —4.2 0.000375318 0.00119057
44 0.000172162 0.000652023 —4.4 0.000172162 0.000662923
4.6 0.0000759095 0.000352465 —4.6 0.0000759095 0.000356785
4.8 0.0000321703 0.000191068 —4.8 0.0000321703 0.000183388
5 0.0000131037 0.0000973375 -5 0.0000131037 0.0000981856
Proof. First consider the case of my. The right-hand side of (9) is
—(x=00)°
© o1 (=) moe 2
—e 2 ds-— 5 >
x V2n —(x—0p) —(x—01)
moe 2 +e 2
—(x—00)* )
/OO 1 —(s—0o) d moe 2 5 1  —=(x—0) d
—c S+ — e 2 X.
x 2z —(x—0,) —(x=01)° V2T
moe 2 +e 2
(11)
Let (x — 6y) = y, then (11) equals
“ 1 s? m 87)}72
——e 2ds— - 0 >
) 2 )y _(+00-01)
mpe 2 +e 2
v
/w 1 _id mpe 2 1 __2d (12)
X —e 2ds+ — e 2
b V21 72 (+00-01)° V2n 4

moe 2 +e 2
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Table 2
00/ my m 60/ my m
0.25 2.13479 24.1522 1/0.25 0.150515 0.986357
0.5 1.33524 4.74288 1/0.5 0.345573 1.06716
0.75 0.960196 2.23134 1/0.75 0.542187 1.19891
1 0.732051 1.36603 1/1 0.732051 1.36602
1.25 0.58103 0.952992 1/1.25 0.906144 1.54739
1.5 0.476916 0.71823 1/1.5 1.06284 1.72428
1.75 0.401895 0.569064 1/1.75 1.20493 1.89102
2 0.345573 0.466877 12 1.33524 2.04744
2.25 0.301843 0.393007 1/2.25 1.45599 2.19458
2.5 0.266958 0.337415 1/2.5 1.56886 2.33362
2.75 0.238509 0.294252 1/2.75 1.6751 2.46561
3 0.214887 0.259889 1/3 1.77568 2.59142
3.25 0.194975 0.231969 1/3.25 1.87139 2.71179
3.5 0.177974 0.208893 1/3.5 1.96282 2.82735
3.75 0.1633 0.189544 1/3.75 2.05049 2.93859
4 0.150515 0.173117 1/4 2.13479 3.04595
4.25 0.139283 0.15902 1/4.25 2.21609 3.14979
4.5 0.129343 0.146808 1/4.5 2.29466 3.25043
4.75 0.120491 0.136141 1/4.75 2.37076 3.34813
5 0.112561 0.126755 1/5 2.4446 3.44314
5.25 0.10542 0.11844 1/5.25 2.51636 3.53568
5.5 0.0989612 0.111031 1/5.5 2.5862 3.6259
5.75 0.093093 0.104392 1/5.75 2.65427 3.71397
6 0.087742 0.0984136 1/6 2.7207 3.80004
6.25 0.0828446 0.0930076 1/6.25 2.78559 3.88424
6.5 0.078348 0.0880978 1/6.5 2.84904 3.96668
6.75 0.0742069 0.0836216 1/6.75 291115 4.04747
7 0.0703827 0.0795265 1/7 2.97199 4.1267
7.25 0.0668427 0.0757679 1/7.25 3.03164 4.20446
7.5 0.0635572 0.0723076 1/7.5 3.09016 4.28082
7.75 0.0605014 0.069113 1/7.75 3.14761 4.35586
8 0.0576534 0.066156 1/8 3.20406 4.42965
8.25 0.0549939 0.0634121 1/8.25 3.25954 4.50223
8.5 0.0525058 0.0608601 1/8.5 3.31411 4.57368
8.75 0.0501741 0.0584813 1/8.75 3.36782 4.64404
9 0.0479859 0.0562596 1/9 3.42069 4.71335
9.25 0.0459287 0.0541805 1/9.25 3.47277 4.78167
9.5 0.043992 0.0522313 1/9.5 3.52409 4.84903
9.75 0.0421665 0.0504009 1/9.75 3.57468 4.91548
10 0.0404434 0.0486788 1/10 3.62458 498105
(+00—01)° » (00—0,)
Expand the e= 2 in (12) to e 2 - &’@1=%) . =72 Note that y is symmetric

about zero. Therefore (12) only depends on |0y — 0;|. Thus, my only depends on
|6p — 01]. By a similar argument as above, (10) depends on (6 — 0,). Hence, m; only
depends on (6 — 0;). O
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Theorem 6. In Theorem 5, my and m; go to zero when |0y — 0| goes to infinity.
The proof of Theorem 6 is in the Appendix.

Theorem 7. Assume that x is a random normal variable with density function
2

X
1,57 ; L2 2 C2 2 ;
€ 20%. For testing Hy: 0~ = aj versus Hy: 6 = a1, my and my in Theorem 3 only

2
2
depend on 3.
1

Proof. By an argument similar to that of Theorem 5, Theorem 7 can be
proved. [

We will call the improved estimators (8) derived by Theorem 3 as admissible
estimators below. In this paper, we will list the upper and lower bounds of m in (8)
for testing the mean and the variance of a normal distribution. These bounds are
derived by software Mathematica. The calculations of other exponential families can
also be deduced straightforwardly.

Table 1 lists the upper and lower bounds of m in (8) for testing the mean of a
normal distribution. Note that by Theorem 4, these values only depend on the
difference of two means 60, and 0.

Table 2 lists the two bounds of m in (8) for testing the variance of a normal
distribution. From Theorem 5, my and m; only rely on the ratio of two variances o7

and o3.

3. Improvement of the modified p-values

In this section, substantial improvement of the admissible estimators are revealed.
By calculating the two mean squared errors of admissible estimators in which m is
chosen to be ™3™ and the usual p-value, we find the improvement of (8) is

2
significant. Tables 3 and 4 list the ratios of MSE FE <Vmo+m] (1) — I(Hp true)) and
2

2
MSE E (Pg0 (//:Z:]E;; 2;2(‘)8) — I(Hy true)) for testing the mean and the variance of a

normal distribution.
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Appendix

Table 3

0y — 0, 0y true 0, true 0y — 0, 0y true 0, true
0.2 0.799395 0.822032 -0.2 0.799395 0.822032
0.4 0.864423 0.85997 —-0.4 0.864423 0.85997
0.6 0.912546 0.896443 —0.6 0.912546 0.896443
0.8 0.947031 0.929039 —0.8 0.947031 0.929039
1 0.970796 0.956286 —1 0.970796 0.956287
1.2 0.98624 0.97726 —-1.2 0.986239 0.977261
1.4 0.995236 0.991402 -1.4 0.995232 0.991409
1.6 0.999204 0.998435 -1.6 0.9992 0.998444
1.8 0.999196 0.99833 -1.8 0.999196 0.99833
2 0.995983 0.991281 -2 0.995985 0.991278
2.2 0.99012 0.977715 22 0.990124 0.977706
2.4 0.98198 0.958259 2.4 0.981968 0.958326
2.6 0.971788 0.933931 -2.6 0.971792 0.933923
2.8 0.959734 0.905531 -2.8 0.959758 0.90547
3 0.945896 0.874193 -3 0.945889 0.874211
3.2 0.93034 0.840971 -3.2 0.930299 0.841079
34 0.912965 0.807255 -34 0.913013 0.807128
3.6 0.893907 0.773711 -3.6 0.893901 0.773729
3.8 0.873193 0.741182 —-3.8 0.873122 0.741376
4 0.850635 0.711007 —4 0.850778 0.710614
4.2 0.826547 0.683068 —4.2 0.826532 0.683108
4.4 0.803757 0.650098 —4.4 0.800957 0.657965
4.6 0.777649 0.625524 —4.6 0.775629 0.631273
4.8 0.745922 0.616928 —4.8 0.752576 0.597624
5 0.719397 0.593435 -5 0.718028 0.597553

Proof of Theorem 6. First, consider the case of my, which has to satisfy Eq. (12) = 0.
Note that (12) can be rewritten as

/_Z <1—F(y)—%y)) x (1—F(y)+$—2) dF(y), (A.1)

where F(y) = [*_ e™/?/v/2rds and k(y) = 1 + /O =0)~(00=0"/2 /- Then (A.1)
can be rewritten as

[ e ronarm [ (25 ) 4r0)

=3 [y ew) o

-
Since myg has to satisfy (12) = 0, thus mj has to satisfy

i)
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Table 4
00/ 0y true 0, true 00/01 0y true 0, true
0.25 0.140491 0.806319 1/0.25 0.300839 0.715799
0.5 0.44327 0.7449 1/0.5 0.511514 0.734071
0.75 0.61475 0.759377 1/0.75 0.638949 0.762978
1 0.71453 0.78633 1/1 0.714533 0.786326
1.25 0.777917 0.811322 1/1.25 0.758484 0.802941
1.5 0.821542 0.832229 1/1.5 0.785266 0.814747
1.75 0.853251 0.849719 1/1.75 0.802922 0.823369
2 0.877154 0.864511 12 0.815335 0.829872
2.25 0.895642 0.877117 1/2.25 0.824559 0.834928
2.5 0.910207 0.887908 1/2.5 0.831632 0.838964
2.75 0.921841 0.897157 1/2.75 0.837235 0.842255
3 0.931227 0.905072 1/3 0.841782 0.844984
3.25 0.938852 0.911827 1/3.25 0.845542 0.847287
3.5 0.945076 0.917553 1/3.5 0.848702 0.849254
3.75 0.950166 0.922368 1/3.75 0.851394 0.850954
4 0.95433 0.92637 1/4 0.853716 0.852436
4.25 0.957729 0.929637 1/4.25 0.855738 0.853741
4.5 0.960492 0.932239 1/4.5 0.857515 0.854897
4.75 0.962716 0.934247 1/4.75 0.85909 0.855928
5 0.964485 0.93571 1/5 0.860492 0.856856
5.25 0.965871 0.936672 1/5.25 0.861751 0.857693
5.5 0.96692 0.93719 1/5.5 0.862888 0.858452
5.75 0.967687 0.937288 1/5.75 0.863919 0.859143
6 0.968208 0.937006 1/6 0.864857 0.859776
6.25 0.968511 0.936382 1/6.25 0.865715 0.860358
6.5 0.968627 0.935438 1/6.5 0.866504 0.860894
6.75 0.968581 0.934199 1/6.75 0.867229 0.86139
7 0.968392 0.93269 1/7 0.867901 0.86185
7.25 0.963074 0.930936 1/7.25 0.868522 0.862277
7.5 0.967646 0.928952 1/7.5 0.869101 0.862675
7.75 0.96712 0.926756 1/7.75 0.869641 0.863047
8 0.966507 0.924369 1/8 0.870143 0.863397
8.25 0.965816 0.921802 1/8.25 0.870616 0.863723
8.5 0.965057 0.919071 1/8.5 0.871058 0.864031
8.75 0.964238 0.916187 1/8.75 0.871473 0.864323
9 0.963362 091317 1/9 0.871865 0.864595
9.25 0.962438 0.910022 1/9.25 0.872235 0.864854
9.5 0.961472 0.906756 1/9.5 0.872584 0.865098
9.75 0.960466 0.903387 1/9.75 0.872915 0.86533
10 0.959427 0.899914 1/10 0.873228 0.865551

Assume that 0, > 6, then the right-hand side of (A.2) is greater than

R |
[ o
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/0 1 /
>
0 (90 1) k

which leads to

mo<e T /( ! 1) (A.3)
2(3- fy i aF )

When 0; — 0, goes to infinity, the term limg, —g,~ o f,* 1/k(y) dF(») in (A.3) goes to

I, which leads that the right-hand side of (A.3) is equal to e~(00=00°/2 /2 Thus, my
goes to zero when 0, — 0y goes to infinity. By a similar argument, 6, is less than 6y,
we have

(00—01)" 1
myse 2 /( 2 © | _1)
2(3- " ey 4F )

which goes to zero as 0y — 0 goes to infinity.
For the case of my, m; has to satisfy the equation

/: <1 —F(y) %@) X (1 —F(y) + k*l( )) dF(y) =0, (A.4)

where k*(y) = 1/(1 + e)’("l‘(’O)‘(ﬂo“")z/z/ml). Then the left-hand side of (A.4) can be
rewritten as

| a-2re)+ronere) - [ (kty)) dF(y)

N 1 m ( *1<y>)2 )

Thus, m; has to satisfy (A.6) = 0. By the fact and Cauchy—Schwarz inequality, we
have

1>/m ! dF (y)
3/ (1 i —(0p— 01) )(1 + 62}’(01*00)) Y

l

which leads to

e—(90—91)2

[oe}
s [ ).
my —»
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By a straightforward calculation, we have

5 e*(90*91)2 (A )
mi<—— . .6
3 e dF () — 1

The denominator of the right-hand side of (A.6) can be rewritten as

© 1 0 1
3/0 1+ 2O —00) dF(y)+3/m 1 + e2(0—00) dF(y) - 1,

which tends to 3/2 — 1 as |0 — 0y| goes to infinity. Thus, when |0; — 0y| goes to
infinity, m; goes to zero. [
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