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Abstract

Consider a p-dimensional location family symmetrical about �. Let Ct(X ) be a 1−� con$dence
set {�: |t(X ) − �|6 c} of �, where t(X ) is some reasonable estimator of �. Traditionally, the
con$dence coe5cient 1−�, which is data independent, is used to be the report for the con$dence
of Ct(X ). In this paper, some improved con$dence reports are provided for p¿ 5. These results
are related to Robinson (Ann. Statistic 7 (1979) 756). The normal case discussed in Robinson
(Ann. Statistic 7 (1979) 756) is a special case of the results of this paper. Moreover, some
admissibility results when p6 4 are also present in this paper.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Traditionally, the con$dence coe5cient is used to be a con$dence report for a con-
$dence set. However, the con$dence coe5cient is a data-independent report. In the
following, examples will be given to explain why the data-independent estimator is
not feasible in some situations. For example, assume that the possible values of a
random variable X are � − 1 and � + 1. The probability of X assigned to these two
values is

p(X = � − 1) = p(X = �+ 1) = 1
2 :
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Let x1 and x2 be two independent observations of X . A con$dence interval of �
based on x1 and x2 is

Cx =
{
� :
∣∣∣∣x1 + x2

2
− �
∣∣∣∣¡ 1

2

}
:

In fact, if we have two diBerent observations of X , then we know that I(�∈Cx) = 1.
If the two observations are the same value, then I(�∈Cx) = 0. It can be seen that the
value of I(�∈Cx) depends on the observations. Therefore, it is not feasible to use a
data independent estimator to report the con$dence of Cx. A data-dependent estimator
is more feasible for estimating the con$dence than a data independent one. This is an
example that shows why we should think about the data-dependent con$dence report.
Let X be a p-dimensional random variable with a p-dimensional unknown parameter

�. For a con$dence set CX of parameter �, determining a con$dence report for the
con$dence of CX can be viewed as an estimation problem of estimation of the coverage
function

I(�∈CX ) =

{
1 if �∈CX

0 if � �∈ CX

(1)

of CX .
Usually, the constant coverage probability estimator 1−� is used as the estimator of

I(�∈CX ). Note that 1−� is data-independent. However, according to the example given
in the above paragraph, it might be better to consider a data-dependent estimator for
(1), unless there are no existent data-dependent estimators better than 1−�. Therefore,
we are interested to discover if there exist some estimators better than 1− �.
Robinson (1979) and Robert and Casella (1994) have some results relating to the

con$dence reports in the multivariate normal distribution. Robinson (1979) points out
the relationship of con$dence report and some conditional properties of statistical pro-
cedures and show that for estimating

I(�: | FX − �|6 c); (2)

where Xp×1 ∼ Np×1(�; I), and c satis$es that P(| FX − �|6 c) = 1− �, FX is the mean
of the observations, the estimator �(X ) = 1− �+ �=(1 + |X |2) is better than the usual
constant coverage probability estimator if p=5 under the squared error loss for some
positive constants �. Robert and Casella (1994) extend the results to p¿ 5 cases.
Note that (2) is a rectangular con$dence set, not an interval. From these two papers,
we can predict that there might exist some better estimation than the usual constant
coverage probability estimator for the location families. Besides, Wang (1999) also
show that there exists a better data-dependent estimator than the usual constant cover-
age probability estimator for the con$dence report in the regression model, where the
distribution of error term is a normal distribution. Thus, in this literature, the normal
cases are widely discussed, and the results are seldom applied to other distributions.
In this paper, we extend the results to more general cases.
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Consider the con$dence sets of location parameters of a p-multidimensional location
family with marginal density functions (f�1 (x); : : : ; f�p(x)). Let �=(�1; : : : ; �p) and Xi=
(Xi1; : : : ; Xip) i=1; : : : ; n be a sample such that Xij−�j are independent random variables
with density function f0(x), j=1; : : : ; p. Let t(X ) denote a reasonable estimator for �
and Ct(X ) denote the con$dence set

Ct(X ) = {�: |t(X )− �|6 c};

where c satis$es P(�∈Ct(X )) = 1− �. Consider the squared error loss function

L(�(X ); �) = (�(X )− I(�∈Ct(X )))2: (3)

Some estimators better than 1 − � are provided for the location families when p¿ 5
under the loss function (3) in Section 2. However, these improved estimators are not
completely speci$ed in this paper due to the di5culty in determining two constants in
the estimators. Nevertheless, Theorem 1 provides a guideline to choose the constants.
Moreover, the admissibility results for p6 4 are also included in Section 3. Section

4 gives some examples of the results of Section 2. And some simulation results are
provided in Section 5.

2. Improved con�dence estimators

In this section, some estimators will be shown to be better than the usual constant
coverage probability estimator for estimating (1).

Theorem 1. Let Xi = (Xi1; : : : ; Xip), i = 1; : : : ; n, be a sample from a p dimensional
location family with density functions (f�1 (x); : : : ; f�p(x)). Here Xij − �j, j=1; : : : ; p,
are identically distributed and follow the distribution with density function f0(x). Let
Yi = (X1i ; : : : ; Xni)′; i = 1; : : : ; p, and t(X ) = (e(Y1); : : : ; e(Yp)), where X = (Y1; : : : ; Yp)
denotes an estimator of � such that e(Yi)−�i is symmetrical about 0 and the density
function h(s) of s= t(X )− � satis1es

h(s) = o
(

1∏p
i=1 s

4
i

)
as |si| → ∞: (4)

Then for estimating (1),

�1(X ) = 1− �+
a

b+ t′(X )t(X )

has smaller risk than 1 − � for p¿ 5 under the loss function (3), where a¿ 0 and
b¿ 0 are su3ciently small and su3ciently large constants, respectively.

Proof.

E(1− � − I(|t(X )− �|6 c))2 − E(�1(X )− I(|t(X )− �|6 c))2
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= − 2E
[

a
b+ t′(X )t(X )

(1− � − I(|t(X )− �|6 c))
]

−E
(

a
b+ t′(X )t(X )

)2
(5)

Now it will be shown that (5)¿ 0. Let t(X )−�=Z=(Z1; : : : ; Zp). Then (Z1; : : : ; Zp)
are identically distributed since ti(X ) are identically distributed. By using Taylor’s
expansion

1
b+ t′(X )t(X )

=
1

b+ (Z + �)′(Z + �)

= (b+ |�|2)−1 − 2
p∑
i=1

Zi�i
(b+ |�|2)2

+ 4
p∑
i=1
j=1

ZiZj
�i�j

(b+ |�|2)3 −
p∑
i=1

Z2i
(b+ |�|2)2 + R("; �);

where R("; �) is the remainder term and " is a point on the line segment joining z to
the origin.
By substituting Taylor’s expansion of 1=(b+ t′(X )t(X )) into (5) and using the fact

that (Z1; : : : ; Zp) are identically distributed and E(Z1(1 − � − I(|Z |6 c))) = 0 (Zi is
symmetrical about 0 and t(X ) satis$es (4)), (5) is equal to

2aE[Z21 (1− � − I(|Z |6 c))]
(p − 4)|�|2 + pb
(b+ |�|2)3 − a2

1
(b+ |�|2)2 + e(�); (6)

where

e(�) = aE[R(Z; "; �)(1− � − I(|Z |6 c))]− 4a2E
( p∑

i=1

Zi�i(
b+ |�|2)2

)2
:

e(�) is shown in the Appendix to be o(1=[(b+|�|2)2] when b is large enough. Note that
the term E[Z21 (1− �− I(|Z |6 c))] in (6) is positive since Z21 and (1− �− I(|Z |6 c))
are increasing in Z21 and the density function of t(X ) satis$es (4). Therefore, for p¿ 4,
(6) is positive if a is chosen small enough and b is chosen large enough.

Remark 1. In Theorem 1, when the location family is a normal distribution, the im-
proved con$dence estimator �(X ) = 1 − � + a=(b + X ′X ) is derived from empirical
Bayes aspect (see Robert and Casella (1994) and Wang (1999)). For general location
distributions, however, it is hard to $nd a general conjugate prior. Therefore, a similar
argument from empirical Bayes perspective for normal distributions cannot apply to
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location families. Thus, we try to construct �1(X ) based on the form of �(X ) since
normal distribution is a location family. And fortunately, it is an accurate presumption.
When the random variables Xij − �j; j=1; : : : ; p, in Theorem 1 are not independent

and each pair has the same correlation, Theorem 2 gives a necessary condition for p
such that �1(X ) is better than 1− � under the loss function (3).

Theorem 2. Assumed that the random variables Xij − �j; j = 1; : : : ; p, in Theorem 1
are not independent, and have a covariance matrix $, where the diagonal terms in $
are 1 and the other terms in $ are the same. Then when p¿ 4 + 2E[Z1Z2(1 − � −
I(|Z |6 c))]=E[Z21 (1− � − I(|Z |6 c))], the results of Theorem 1 hold.

Proof. Since Xij − �j; j=1; : : : ; p, are not independent and E(Xij − �j)(X ′
ij′ − �′

j′) are
a constant for any pair (j; j′), j �= j′, by an argument similar to that in Theorem 1 and
the fact that

∑
i �=j �i�j6 |�|2=2, (5) is greater than

2aE[Z21 (1− � − I(|Z |6 c))]

×[(p−4−2E(Z1Z2(1−�−I(|Z |6c)))=E[Z21 (1−�−I(|Z |6c))])|�|2+pb]=
(b+ |�|2)3 − a2=(b+ |�|2)2 + e(�): (7)

Hence when p¿ 4 + 2E[Z1Z2(1 − � − I(|Z |6 c))]=E[Z21 (1 − � − I(|Z |6 c))], by a
similar argument as Theorem 1, (7) is greater than zero if a is chosen small enough
and b is chosen large enough.

In Theorems 1 and 2, constants a and b are not speci$ed. In the following, Lemmas
1 and 2 give a rough bound of a when b is given. And b can be chosen as 1 according
to simulation results and literature.

Lemma 1. When �=0 and Xij; j=1; : : : ; p, are independent, �1(X ) has a small risk
than 1− � if and only if

a6 2E0[[I(|t(X )|6 c)− (1− �)]]=E0[1=(b+ t′(X )t(X ))2]:

Proof. When �= 0, (5) can be rewritten as

a(−2E0[(1− � − I(|t(X )|6 c))=(b+ t′(X )t(X ))]

− aE0[1=(b+ t′(X )t(X ))2]): (8)

(8) is greater than zero if and only if

0¡a6 2E0[(I(|t(X )|6 c)− (1− �))=(b+ t′(X )t(X ))]=E0[1=(b+ t′(X )t(X ))2]:
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Lemma 2. When ‖�‖ goes to in1nity and Xij; j = 1; : : : ; p, are independent, �1(X )
has a risk smaller than 1− � asymptotically if

a6 2(p − 4)E0[t21(X )(1− � − I(|t(X )|6 c))]:

Proof. If ‖�‖ goes to in$nity, then

(6)≈ 2aE0[t21(X )(1− � − I(|t(X )|6 c))](p − 4)=|�|4 − a2=|�|4

= a{2(p − 4)E0[t21(X )(1− � − I(|t(X )|6 c))]− a}=|�|4:

Thus (4) is greater than zero asymptotically if

a6 2(p − 4)E0[t21(X )(1− � − I(|t(X )|6 c))]:

When Xij − �j; j = 1; : : : ; p, are independent, combining Lemmas 1 and 2,

‘=min{2E0[(I(|t(X )|6 c)− (1− �))=(b+ t′(X )t(X ))]=E0[1=(b+ t′(X )t(X ))2];

2(p − 4)E0[t21(X )(1− � − I(|t(X )|6 c))]}

is a rough bound of a. Although it is not a exact bound of a, it can provide information
in determining a. When Xij−�j are pairwise dependent as in Theorem 2, a rough bound
of a is

‘=min{2E0[(I(|t(X )|6 c)− (1− �))=(b+ t′(X )t(X ))]=E0[1=(b+ t′(X )t(X ))2];

2[p − 4− 2E0(t1(X )t2(X )(1− � − I(|t(X )|6 c)))]

×E0[t21(X )(1− � − I(|t(X )|6 c))]}:

3. Admissibility results when p6 4

In Section 2, the scenarios for p¿ 5 are discussed. In this section, the admissibility
results of con$dence coe5cient for p6 4 are concluded in Theorem 3. Moreover, here
we assume that the con$dence coe5cient is a Bayes estimator of (1) with respect to
the noninformative prior &(�) = 1. For t distribution, if t(X ) is chosen to be the mean
vector of observations, then 1 − � is a Bayes estimator of (1) with respect to prior
&(�) = 1. The proof will be by Blyth’s method (1951), which is a su5cient condition
for admissibility. Another version of this method can be found in Berger (1985) and
Brown (1971).

Theorem (Berger, 1985): Consider a decision problem in which ' is a nondegenerate
convex subset of Euclidean space (i.e., ' has positive Lebesgue measure), and in
which the decision rules with continuous risk functions form a complete class. Then
an estimator �0 (with a continuous risk function) is admissible if there exists a
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sequence {&n} of (generalized) priors such that

(a) the Bayes risks r(&n; �0) and r(&n; �n) are 1nite for all n, where �n is the Bayes
rule with respect to &n;

(b) for any nondegenerate convex set C ⊂ ', there exists a K ¿ 0 and an integer
N such that, for n¿N ,∫

C
dF&n(�)¿K ;

(c) limn→∞ [r(&n; �0)− r(&n; �n)] = 0.

First, consider a sequence of priors &n(�) = "n(|�|2), with

"n(v) =




1 if 06 v6 1(
1− ln v

ln n

)2
if 16 v6 n=2

an
4v2=n2 − b

if n=26 v¡∞;

an = ln
3 2=ln2 n, b= 1− ln 2. De$ne

Mn =
∫ ∫

[(1− � − I(�∈Ct(x)))2 − (�&n(t) − I(�∈Ct(x)))2]h(t − �)&n(�) dt d�;

where �&n(t) is the Bayes estimator of (1) with respect to prior &n(�). Note that &n(�) → 1
as n → ∞.

Lemma 3.∫
Ct(x)

&n(�)h(t − �) d�= &n(t)(1− �) + o(1): (9)

for n su3ciently large.

Proof. This proof is referred to Lemma 1 in Wang (1998), where h denotes the den-
sity function of a p-dimensional normal random variable. For a density function h
satisfying (4), Eq. (9) can be derived by an argument similar that of Lemma 1 of
Wang (1998).

Lemma 4. There exists a sequence Bn → ∞ such that as n → ∞

Mn6
∫

|t|¿Bn
(1− � − �&n∗ (t))

2
∫

|�−t|6|t|=2
&n(�)h(t − �) d� dt + o(1);

where

�&n∗ (t) =

∫
|�−t|¡c &n(�)h(t − �) d�∫

|�−t|6|t|=2 &n(�)h(t − �) d�
:
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The proof of Lemma 4 can be followed as Brown and Hwang (1990) except that
inequality (2.4) in Brown and Hwang should be changed to

&n(�)h(t − �)6 kh((|�| − B)+):

Lemma 5.

(�&n∗ (t)− (1− �))26H

[[
"′
n(R

2)
"n(R2)

]2
+
[
R2 FF"n(R2)
"n(R2)

]2
+ O

(
h
( t
3

))]
;

where R= |t|, FF"n(u2) = sup{|"′′
n (v

2)| : v¿ u=2}, and H is some positive constant.

Since h(s) satis$es (4), the proof of Lemma 5 can be demonstrated by similar
arguments as Lemma 4 in Brown and Hwang (1990).
With Lemmas 3–5, we have the following theorem.

Theorem 3. The assumptions on Xi; i=1; : : : ; n, are the same as in Theorem 1, except
that the dimension of Xi is p6 4. And also assume that the con1dence coe3cient
1−� is a Bayes estimator of (1) with respect to a prior 1. Then 1−� is an admissible
estimator of (1) under the loss function (3).

This proof will be by Blyth’s method to show that Mn → 0 as n → ∞. Combining
Lemmas 3–5 and then making the change of variables r = |t|2, we need to show that∫ ∞

Bn

[[
"′
n(r)
"n(r)

]2
+
[
r FF"n(r)
"n(r)

]2]
"n(r)rp=2−1 dr → 0 as n → ∞ (10)

By straightforward calculation (see the proof of Theorem 6 in Brown and Hwang
(1990) and Theorem 1 in Wang (2001)), (10) → 0 as n → ∞ and the proof is
completed.

4. Examples

In Theorem 1, it is not di5cult to $nd estimators to satisfy condition (4). The
following are some examples.

Example 1. Cauchy distribution: Let Xi = (Xi1; : : : ; Xip); i = 1; : : : ; n, be a sample of
p dimensional Cauchy distribution with density function (f�1 (x); : : : ; f�p(x)), where
f�(x)= 1=[&(1+ (x− �)2)] and t(X ) is the median vector of the sample. Suppose that
n is odd and n= 2m+ 1. Then the density function of t(X )− � is

h(s) =
p∏
i=1

n!
m!1!m!

[F(si)]m[1− F(si)]m
1

&(1 + s2i )
;
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see David (1981). Note that when si goes to in$nity,

F(si) → 1

and

1− F(si) = o
(
1
si

)
:

The last equality is due to∫ ∞

s

1
&(1 + x2)

dx6
∫ ∞

s

1
&x2

dx =
1
&s
:

When s → −∞, by a similar argument, we have F(s) = o(1=s) and 1 − F(s) → 1. It
leads to

h(s) =
p∏
i=1

o
(
1
si

)m 1
1 + s2i

= o
(

1
smi + s2+mi

)
:

Then the necessary condition of

h(s) = o

( p∏
i=1

1
s4i

)

is m¿ 3 (n¿ 7).

Example 2. t distributions: In Example 1, if the Cauchy distribution is changed to t
distribution, t(X ) could be chosen to be the median if the number of observations is
greater than 7, since the tail of the Cauchy distribution, t distribution with degree of
freedom 1, is heavier than t distributions with degrees of freedom greater than 2. For
the t distribution with degrees of freedom greater than 3, t(X ) could be chosen to
be the mean for any number of observations because the distribution of mean is the
same as that of one observation distribution and the tail of t distribution satis$es (4)
with degrees of freedom greater than 3. Therefore, the normal case shown in Robinson
(1979) is a special case of Theorem 1.

Example 3. Uniform distribution: Let Xi = (Xi1; : : : ; Xip), i = 1; : : : ; n, be a sample of
p-dimensional uniform distribution with density function (f�1 (x); : : : ; f�p(x)), where
f�(x) = I[�−1; �+1](x). Since f�(x) is zero outside the interval [� − 1; � + 1], for any
estimator t(X ) of �, the density function of t(X ) satis$es condition (4).

Example 4. Exponential distribution: Let Xi = (Xi1; : : : ; Xip); i = 1; : : : ; n, be a sample
of p-dimensional exponential distribution with density function (f�1 (x); : : : ; f�p(x)),
where f�(x)=e−(x−�), x¿�. Then the UMVUE estimator of �j is tj(X )=X(1) j −1=n,
where X(1) j denotes the minimal value of (X1j; X2j; : : : ; Xnj). The density function of
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tj(X ) is

n!
(n− 1)! f

(
s+

1
n

)(
1− F

(
s+

1
n

))n−1
if � − 1

n
¡s

= ne−(s+
1
n−�)

∫ ∞

s+1n

e−(t−�) dt

= − ne−(s+
1
n−�)e−(t−�)|∞

s+1n

= ne−(s+
1
n−�)e−(s+

1
n−�) = ne−2(s+

1
n−�)

= o
(
1
s4

)
as |s| → ∞:

Therefore, for Examples 3 and 4, �1(X ) can be used as an indicator of � belonging to
Ct(X ) for all sample size n if p¿ 5.

5. Simulation results

In Section 2, the form of improved estimators �1(X ) has been provided. However,
the coe5cients of �1(X ) are not speci$ed in the proof of Theorem 1. Although the
values of the coe5cients are hard to provide by theoretical deduction, they can be
obtained from statistical simulations. Figs. 1–4 show the values of the ratios of the mean
squared error R(�1(X ); I(�∈Ct(X ))) of improved estimators and the mean squared error
R(1 − �; I(�∈Ct(X ))) of con$dence coe5cients through the norm of � for the cases
that Xij − �; j = 1; : : : ; p, are independent and identical t distributions with degrees
of freedom k. The improvement is seen to be substantial when the norm of � is not
large. It can also be seen that the improvement of the new estimators for estimating

Fig. 1. The plot of R(�1(x); �)=R(1 − �; �) through |�|2 with k = 1, c = 3:74, 1 − � = 0:8, n = 5, p = 10,
a = 0:6, b = 1, ‘ = 1:48753 and t(x) is the median.
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Fig. 2. The plot of R(�1(x); �)=R(1 − �; �) through |�|2 with k = 4, c = 2:16, 1 − � = 0:9, n = 6, p = 8,
a = 0:2, b = 1, ‘ = 0:31214 and t(x) is the mean.

Fig. 3. The plot of R(�1(x); �)=R(1 − �; �) through |�|2 with k = 1, c = 2:81, 1 − � = 0:9, n = 6, p = 5,
a = 0:2, b = 1, ‘ = 0:28233 and t(x) is the median.

Fig. 4. The plot of R(�1(x); �)=R(1 − �; �) through |�|2 with k = 5, c = 2:55, 1 − � = 0:95, n = 4, p = 7,
a = 0:1, b = 1, ‘ = 0:17163 and t(x) is the mean.

the coverage function of the con$dence set based on the median is more signi$cant
than that based on the mean.
All simulations were based on 10,000 replications.
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Appendix

Proof of the following equality

e(�) = o
(

1
b+ |�|2

)2
:

By de$nition, the term E[R("; �)(1− � − I(|z|6 c))] in e(�) can be written as∫
|M|¿ 1

2 (b+|�|2)
R("; �)(1− � − I(|z|6 c))f(z) dz

+
∫

|M|¡ 1
2 (b+|�|2)

R("; �)(1− � − I(|z|6 c))f(z) dz

=K1 + K2;

where

M = ("+ �)′("+ �)− |�|2:
For |M|¡ 1

2 (b+ |�|2),
1

b+ |"+ �|2 =
1

b+M+ |�|2 ¡
2

b+ |�|2 :

Therefore K2 = o( 1
b+|�|2 )

2.

For |M|¿ 1
2 (b+ |�|2), we have

|"|2 + 2|"‖�|¿ 1
2
(b+ |�|2);

which implies

|"|¿ [(b+ |�|2)=2 + |�|2]1=2 − |�|¿
(
b+ |�|2
24

)1=2
:

Since " is on the line segment joining z to the origin, we have

|z|¿
(
b+ |�|2
24

)1=2
(A.1)

for |M|¿ 1
2 (b+ |�|2).
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Now using (9) and the fact that the density of zi is o(1=z4i ) if |zi| → ∞, for b large
enough, we have

K1 =
∫

|M|¿ 1
2 (b+|�|2)

R(z; "; �)(1− � − I(|z|6 c))o
(

1∏p
i=1(z

4
i )

)
dz

6
1

(b+ |�|2)3
∫

|M|¿ 1
2 (b+|�|2)

(∑
i; j

|zi|2|zj|+
∑
i

|zi|3
)

×(1− � − I(|z|6 c))o
(

1∏p
i=1 z

4
i

)
dz

= o
(

1
b+ |�|2

)2
:

The last equality holds because the above integration is bounded.
For the other term

E

( p∑
i=1

zi�i
(b+ |�|2)2

)2

in e(�), it is obviously equal to o(1=(b+|�|2))2. Therefore, combining the above results,
we have

e(�) = o
(

1
b+ |�|2

)2
:
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