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Modified p-Value of Two-Sided Test for Normal
Distribution with Restricted Parameter Space

HSIUYING WANG

Institute of Statistical Science, Academia Sinica, Taipei, Taiwan

This article proposes a modified p-value for the two-sided test of the location of
the normal distribution when the parameter space is restricted. A commonly used
test for the two-sided test of the normal distribution is the uniformly most powerful
unbiased (UMPU) test, which is also the likelihood ratio test. The p-value of the
test is used as evidence against the null hypothesis. Note that the usual p-value does
not depend on the parameter space but only on the observation and the assumption
of the null hypothesis. When the parameter space is known to be restricted, the
usual p-value cannot sufficiently utilize this information to make a more accurate
decision. In this paper, a modified p-value (also called the rp-value) dependent on
the parameter space is proposed, and the test derived from the modified p-value is
also shown to be the UMPU test.

Keywords p-Value; rp-Value; Two-sided test; Uniformly most powerful
unbiased test.

AMS Mathematics Classifications Primary 62F03; Secondary 62F30.

1. Introduction

Traditionally, statistical theory is established in natural parameter space. However,
in many real applications, the parameter space is restricted, and the methodology
established from the natural parameter space does not sufficiently utilize the
important information regarding the restriction. This bounded parameter space
problem has been discussed in recent literature. Mandelkern (2002) gave the example
that the class Neyman procedure is not satisfactory to many scientists where the
parameter is known to be bounded. This problem occurs frequently in analyzing
the data from physics experiments. Feldman and Cousins (1998) and Roe and
Woodroofe (2001) proposed several alternatives for setting confidence bounds in
this situation. In this paper, we mainly focus on the bounded parameter space in
hypothesis testing.
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Let X1� � � � � Xn be a random sample from a N��� �2� population. The location
parameter � is the parameter of interest. Assume that the parameter space � is
restricted and the bounds of the parameter space are known. For example, if we are
interested in testing if the average weight of newborn infants for mothers in a certain
group is less than a certain value, the mean of the weight is certainly bound, and the
bound information can be obtained from empirical experience. Another example is
to test if the mean of the length of products produced by a machine is less than or
greater than a standard length. In this case, we can measure some products first,
then obtain rough upper and lower bounds for the mean. From these examples, we
can conclude that for most applications, it is not difficult to find rough bounds for
the parameter of interest, and we can assume that � has a lower bound, an upper
bound, or both bounds. In this paper, we consider the two-sided hypothesis

H0 � � = �0 versus H1 � � �= �0� (1)

Situations of �2 both known and unknown will be discussed. For the two-
sided hypothesis (1), there does not exist a uniformly most powerful test (see
Lehmann, 1983). A uniformly most powerful unbiased (UMPU) test is usually used
for testing (1). When �2 is known, without loss of generality, �2 is assumed to be 1.
The rejection region of a level 	 UMPU test is 
x � �x̄ − �0� ≥ c/

√
n�, where c is the

	/2 upper cutoff point of a standard normal distribution. For an observation x̄,
the corresponding p-value of the test is P��Z� ≥ √

n�x̄ − �0�� where Z has a standard
normal distribution. When �2 is unknown, the rejection region of a level 	 UMPU
test is 
x � �x̄ − �0�/

√
s2n/n ≥ c� where s2n =

∑n
i=1�xi − x̄�2/�n− 1� and c is the 	/2

upper cutoff point of the t distribution with degrees of freedom n− 1. The p-value
corresponding to observations x̄ and s2n is P��T � ≥ �x̄ − �0�/

√
s2n/n�, where T has a

t distribution with degrees of freedom n− 1. When the p-value is small, the null
hypothesis H0 tends to be rejected, otherwise, H0 is not rejected. Thus the p-value
is implicitly used as a measure of evidence against the null hypothesis. However,
using only the p-value as evidence might lead to a wrong decision (see Berger and
Wolpert, 1984). Hwang et al. (1992) also point out the need for evidence evaluation.

Note that the usual p-values of the UMPU tests do not depend on the para-
meter space of �. That is, even if we have more information about the parameter
space, the usual p-value cannot reflect the merit of having the information, with the
result that the restriction information cannot help us to estimate � more accurately
if we use the p-value as evidence against the null hypothesis. There are also other
criticisms leveled at the p-value, e.g., Lindley (1957) and Berger and Delampady
(1987), etc. Most criticisms of the p-value in the literature are not from the point
of view of restriction of the parameter space. In this paper, we propose a modified
p-value from the point of view of bounded parameter space.

A measure of evidence against the null hypothesis is proposed in this paper.
Since the p-value is widely used, we may call the proposed evidence a modified
p-value. However, since the modified p-value is not the usual probability, to avoid
confusion, the proposed evidence is also called the rp-value, which means a modified
measure of evidence from the usual p-value based on the restricted parameter space.
For the other testing problems regarding restricted parameter space, Woodroofe
and Wang (2000) provide a modified p-value for the one-sided testing problem of
the Poisson distribution. For the simple hypothesis versus the simple alternative
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Modified p-Value of Two-Sided Test 1363

hypothesis testing problem and the one-sided testing problem, Wang (2004, 2005)
has proposed modified p-values better than the usual p-value for some distributions.

This paper is organized as follows. A modified measure of evidence depending
on the bound of the parameter space is proposed in Sec. 2. In Sec. 3, the proposed
method is illustrated using a real data example, and simulation results comparing
the p-value and the rp-value are presented. The advantage of the rp-value from a
testing point of view is demonstrated in Sec. 4. Section 5 examines the p-value and
the rp-value according to a criterion provided in the literature.

2. The rp-Values

A measure of evidence against the null hypothesis dependent on the parameter space
is proposed in this section. Suppose that the parameter space has a lower bound
a and an upper bound b. Let X1� � � � � Xn be a random sample from an N��� �2�.
First, we consider the case of �2 known and assume �2 = 1. The usual p-value of
the UMPU test of (1) with respect to an observation x̄ is

p�0
�x̄� = P

(
�Z� > �x̄ − �0�√

1/n

)
� (2)

where Z denotes a random variable of standard normal distribution.
For a fixed observation x̄, we propose

r�0�x̄� =
P
(
�Z� > �x̄−�0�√

1/n

)
−min�∈�a�b� P

(
�Z� > �x̄−��√

1/n

)
max�∈�a�b� P

(
�Z� > �x̄−��√

1/n

)
−min�∈�a�b� P

(
�Z� > �x̄−��√

1/n

) (3)

as a modified measure of evidence against the null hypothesis. The motivation for
proposing (3) is as follows.

The range of (2) is

(
min

�0∈�a�b�
P

(
�Z� > �x̄ − �0�√

1/n

)
� max
�0∈�a�b�

P

(
�Z� > �x̄ − �0�√

1/n

))

when �0 belongs to �a� b�. No matter what value of �0 ∈ �a� b� is chosen to be the
null hypothesis � = �0, the p-value p�0

�x̄� is always greater than min�0∈�a�b� P
(�Z� >

�x̄ − �0�/
√
1/n

)
. Thus the magnitude min�0∈�a�b� P

(�Z� > �x̄ − �0�/
√
1/n

)
should not

be included in a measure of evidence against the null hypothesis. Hence first we
suggest that a reasonable measure of evidence should be the usual p-value minus
this magnitude, which is

p�0
�x̄�− min

�0∈�a�b�
P

(
�Z� > �x̄ − �0�√

1/n

)
� (4)

Moreover, usually we would decide to reject the null hypothesis or accept the
null hypothesis by comparing the p-value with a value 	, where 0 < 	 < 1. If we can
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transform (4) so that the range is �0� 1�, then it is more reasonable to compare it
with a value 	 between 0 and 1. Thus, for fixed x̄, we divide (4) by

(
max
�0∈�a�b�

P

(
�Z� > �x̄ − �0�√

1/n

)
− min

�0∈�a�b�
P

(
�Z� > �x̄ − �0�√

1/n

))

so that its range is �0� 1�, which leads to (3). Note that r�0�x̄� is an x-dependent
transformation of p�0

�x̄�, because max�0∈�−���� P��Z� > �x̄ − �0�/
√
1/n

) = 1 and
min�0∈�a�b� P

(�Z� > �x̄ − �0�/
√
1/n

) = 0.
Under this transformation, the range of (3) is �0� 1�. Note that when the

parameter space is the natural parameter space, (3) is exactly equal to the usual
p-value (2). As mentioned in Sec. 1, since (3) is a modification of the p-value, we
call it an rp-value, because it is a modification of the p-value based on restricted
parameter space.

For the case of �2 unknown, the usual p-value is

p′
�0
�x̄� = P�0

(
�T � > �x̄ − �0�√

s2n/n

)
�

We propose

r ′�0�x̄� =
P
(
�T � > �x̄−�0�√

s2n/n

)
−min�∈�a�b� P

(
�T � > �x̄−��√

s2n/n

)
max�∈�a�b� P

(
�T � > �x̄−��√

s2n/n

)
−min�∈�a�b� P

(
�T � > �x̄−��√

s2n/n

) (5)

as the rp-value for the case where T has a t distribution with degrees of freedom
n− 1. Note that r ′�0�x̄� is also equal to the usual p-value if the parameter space is
the natural parameter space.

When using the rp-value, confidence intervals of � can be constructed. A 1− 	

confidence interval based on the rp-value is


�0 �

P
(
�T � > �x̄−�0�√

s2n/n

)
−min�∈�a�b� P

(
�T � > �x̄−��√

s2n/n

)
max�∈�a�b� P

(
�T � > �x̄−��√

s2n/n

)
−min�∈�a�b� P

(
�T � > �x̄−��√

s2n/n

) > 	


 � (6)

which can be rewritten as {
� �

��X − ��√
s2n/n

< t�/2

}
�

where

� = 	

(
max
�∈�a�b�

P

(
�T � > �x̄ − ��√

s2n/n

)
− min

�∈�a�b�
P

(
�T � > �x̄ − ��√

s2n/n

))

+ min
�∈�a�b�

P

(
�T � > �x̄ − ��√

s2n/n

)
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Modified p-Value of Two-Sided Test 1365

and t�/2 is the �/2 upper cutoff point of the t distribution with degrees of
freedom n− 1. Note that � depends on the observation x̄. Since this paper
focuses on hypothesis testing, the properties of confidence interval (6) remain under
investigation.

3. Examples

In this section, the proposed method is illustrated using a real data example. Data
on 189 infant birth weights was collected at Baystate Medical Center, Springfield,
Massachussets, in 1986. In this example, the population is the entire data set, 189
infant birth weights. The mean and variance of these weights are 2944g and 7292 g,
respectively. We assume that infant birth weight follows a normal distribution
N��� �2�. Suppose that the researchers do not know all the data. A sample of size n
is chosen from the data, and they will use the sample to test (1), where � is the mean
of the data. In this example, we assume that according to empirical information, the
mean of baby weights has a lower bound a and an upper bound b. If a = 2700 and
b = 3200 and we have a sample of five weights: 2600, 2055, 3062, 3232, 1970, the
mean of the sample is 2583.8. Let �0 be 2944. Then the usual p-value of the UMPU
test is

P

(
�Z� > 2944− 2583�8√

7292/5

)
= 0�269�

Before calculating the rp-value, we need to derive the values of
max�∈� P��Z� ≥ �2583�8− ��/√7292/5� and min�∈� P��Z� ≥ �2583�8− ��/√7292/5�,
where � = �2700� 3200�. It is very easy to calculate these values because
max�∈� P��Z� ≥ �2583�8− ��/√7292/5� happens at � = 2700, which is

P

(
�Z� > 2700− 2583�8√

7292/5

)
= 0�721�

and min�∈� P��Z� ≥ �2583�8− ��/√7292/5� happens at � = 3200, which is

P

(
�Z� > 3200− 2583�8√

7292/5

)
= 0�059�

By definition, the rp-value is �0�269− 0�059�/�0�721− 0�059� = 0�318. In this case,
H0, which is true, will not be rejected by the usual p-value or the rp-value if the
significance level is 0.1. If �0 is 3100, then the usual p-value is

P

(
�Z� > 3100− 2583�8√

7292/5

)
= 0�113�

The rp-value is �0�113− 0�059�/�0�721− 0�059� = 0�082. The rp-value leads
to rejection of the untrue H0, but the usual p-value cannot reject H0 when the
significance level is 0.1. In this case, making a decision based on the rp-value is more
appropriate.

We also conduct a simulation to compare both measures of evidence. The two
measures of evidence used in the simulation are p′

�0
�x̄� and r ′�0�x̄�. Tables 2.1 and
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Table 2.1
The ratios of the p-value and the rp-value less than 0.05 based on 1000 replicates.

The true value of � is 2944. The parameter space is �2700� 3200�

�0 H0 true or false n p-value ≤ 0�05 rp-value ≤ 0�05

2700 false 10 0.173 0.516
2800 false 10 0.081 0.104
2944 true 10 0.049 0.01
3000 false 10 0.053 0.013
3100 false 10 0.07 0.089
3200 false 10 0.151 0.532

2.2 show the ratios of the p-values and the rp-values less than 0.05, in 1000 samples
corresponding to some �0 and n when the lower bound and the upper bound are
chosen to be 2700 and 3200, respectively.

Table 2.3 contains the simulation results when the lower bound and the upper
bound are chosen to be 2600 and 3100, respectively.

From Tables 2.1–2.3, when �0 is equal to 2944, which means H0 is true, the
number of p-values less than 0.05 is greater than the number of rp-values less
than 0.05. And when �0 is not equal to 2944, in most situations, the number of
p-values less than 0.05 is less than the number of rp-values less than 0.05. From the
simulation results, the performance of the rp-value, which sufficiently utilizes the
bound information, is better than the usual p-value.

4. Testing Viewpoint

In this section, we will show that the test derived from the rp-value is the UMPU
test under the criterion introduced below. Note that here the test derived from the
rp-value is not a new test. It is shown that the test is exactly equal to the UMPU
test under some conditions.

For any measure of evidence e�X� used against the null hypothesis, where e�X�

denotes a function of X = �X1� � � � � Xn�, the null hypothesis is rejected if e�X� is
small. For example, the null hypothesis is rejected if the p-value is small. Thus a test

Table 2.2
The ratios of p-value and rp-value less than 0�05 based on 1000 replicates. The

true value of � is 2944. The parameter space is �2700� 3200�

�0 H0 true or false n p-value ≤ 0�05 rp-value ≤ 0�05

2700 false 20 0.294 0.537
2800 false 20 0.135 0.152
2944 true 20 0.041 0.023
3000 false 20 0.062 0.045
3100 false 20 0.105 0.151
3200 false 20 0.301 0.557
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Table 2.3
The ratios of the p-value and the rp-value less than 0.05 based on 1000 replicates.

The true value of � is 2944. The parameter space is �2600� 3100�

�0 H0 true or false n p-value ≤ 0�05 rp-value ≤ 0�05

2600 false 30 0.72 0.834
2700 false 30 0.442 0.482
2800 false 30 0.155 0.157
2944 true 30 0.042 0.021
3000 false 30 0.042 0.044
3100 false 30 0.167 0.289

derived from e�X� should take the form

�X� =
{
1 if e�X� < k

0 otherwise�
(7)

where k is some constant between 0 and 1, and �X� = 1 denotes rejecting the null
hypothesis. If a test derived from a measure of evidence against null distribution has
a good property, we say that the measure of evidence is good from a testing point
of view.

Theorem 1. Let X1� � � � � Xn be a normal random variable N��� 1�. Assume that the
parameter space of � is �a� b� and k is a constant satisfying

k < Min



∫ b−a√

1/n
�0−a√

1/n

e−
t2
2 dt

∫ b−a√
1/n

0 e−
t2
2 dt

�

∫ b−a√
1/n

b−�0√
1/n

e−
t2
2 dt

∫ b−a√
1/n

0 e−
t2
2 dt


 � (8)

For testing

H0 � � = �0 vs� H1 � � �= �0�

the test derived from the rp-value r�0�X� is

�X� =
{
1 if r�0�X� < k

0 otherwise�

where k satisfies E�0
�X� = 	. Then �X� is a level 	 UMPU test.

Proof. For any observation x̄, at least one of the following three cases is true:
(i) x̄ ≤ a, then

r�0�x̄� =
P
(
�Z� > �0−x̄√

1/n

)
− P

(
�Z� > b−x̄√

1/n

)
P
(
�Z� > a−x̄√

1/n

)
− P

(
�Z� > b−x̄√

1/n

) �
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(ii) x̄ ≥ b, then

r�0�x̄� =
P
(
�Z� > x̄−�0√

1/n

)
− P

(
�Z� > x̄−a√

1/n

)
P
(
�Z� > x̄−b√

1/n

)
− P

(
�Z� > x̄−a√

1/n

) �

(iii) a ≤ x̄ ≤ b, then

r�0�x̄� =
P
(
�Z� > �x̄−�0�√

1/n

)
−min

[
P
(
�Z� > b−x̄√

1/n

)
� P

(
�Z� > x̄−a√

1/n

)]
1−min

[
P
(
�Z� > b−x̄√

1/n

)
� P

(
�Z� > x̄−a√

1/n

)] �

Note that r�0�x̄� is continuous at x̄ = a and x̄ = b.

Now we will show that �X� is the UMPU test. If x̄ belongs to the first case,
by straightforward calculation, we have

r�0�x̄� =
∫ �b−x̄�/

√
1/n

��0−x̄�/
√

1/n
e−

t2
2 dt

∫ �b−x̄�/
√

1/n

�a−x̄�/
√

1/n
e−

t2
2 dt

=
∫ �b−�0�/

√
1/n

0 e−
�t+��0−x̄�/

√
1/n�2

2 dt∫ �b−�0�/
√

1/n

�a−�0�/
√

1/n
e−

�t+��0−x̄�/
√

1/n�2

2 dt

� (9)

Thus the rejection region r�0�x̄� < k is equivalent to

∫ �b−�0�/
√

1/n

0 e−
�t+��0−x̄�/

√
1/n�2

2 dt∫ 0

�a−�0�/
√

1/n
e−

�t+��0−x̄�/
√

1/n�2

2 dt
<

k

1− k
� (10)

Since the normal distribution has a monotone likelihood ratio,

e−
�t1+��0−x̄�/

√
1/n�2

2

e−
�t2+��0−x̄�/

√
1/n�2

2

is a nondecreasing function of x̄ − �0 for any t1 > t2. Thus the set

{
x �

e−
�t1+��0−x̄�/

√
1/n�2

2

e−
�t2+��0−x̄�/

√
1/n�2

2

<
k

1− k

}

is equivalent to the set 
x � x̄ − �0 < −c1�, where c1 is a constant depending on t1
and t2. Since any point in the set 
t � t ∈ �0� �b − �0�/

√
1/n�� is not less than any

point in the set 
t � t ∈ ��a− �0�/
√
1/n� 0��, (10) is equivalent to 
x � x̄ − �0 < −v�,

where v is a positive constant.
If x̄ belongs to the second case, by a similar argument to the above, r�0�x̄� < k

is equivalent to

∫ 0

�a−�0�/
√

1/n
e−

�t+��0−x̄�/
√

1/n�2

2 dt

∫ �b−�0�/
√

1/n

0 e−
�t+��0−x̄�/

√
1/n�2

2 dt

<
k

1− k
� (11)
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Note that by straightforward calculation,

{
x �

e−
�t+��0−x̄�/

√
1/n�2

2

e−
�t+��0−x̄�/

√
1/n�2

2

>
1− k

k

}

is equivalent to the set 
x � x̄ − �0 > c1�. Thus (11) is equal to 
x � x̄ − �0 > v�.
If x̄ belongs to the third case, then first consider the case of a ≤ x̄ ≤ �0 and

x̄ − a < b − x̄. Then by a similar argument to the above, r�0�x̄� < k is equivalent to

∫ �b−�0�/
√

1/n

0 e−
�t+��0−x̄�/

√
1/n�2

2 dt∫ 0

�x̄−�0�/
√

1/n
e−

�t+��0−x̄�/
√

1/n�2

2 dt
<

k

1− k
� (12)

which is equivalent to 
x � x̄ − �0 < −v1� by the monotone likelihood ratio property,
where v1 is a positive constant.

If x̄ belongs to the third case, a ≤ x̄ ≤ �0 and x̄ − a ≥ b − x̄. Then by a similar
argument to the above, r�0�x̄� < k is equivalent to

∫ �2x̄−a−�0�/
√

1/n

0 e−
�t+��0−x̄�/

√
1/n�2

2 dt∫ 0

�x̄−�0�/
√

1/n
e−

�t+��0−x̄�/
√

1/n�2

2 dt
<

k

1− k
� (13)

By the monotone likelihood ratio property, (13) is equal to 
x � x̄ − �0 < −v2�,
where v2 is a positive constant. Note that 2x̄ − a− �0 > b − �0 in this case, otherwise
x̄ − a > b − x̄ does not hold. Comparing (12) and (13), we have v2 > v1.

By a similar argument, when �0 ≤ x̄ ≤ b and x̄ − a > b − x̄, r�0�x̄� < k is
equivalent to

∫ 0

�a−�0�/
√

1/n
e−

�t+��0−x̄�/
√

1/n�2

2 dt

∫ �x̄−�0�/
√

1/n

0 e−
�t+��0−x̄�/

√
1/n�2

2 dt

<
k

1− k
� (14)

which is equal to 
x � x̄ − �0 > v3�, where v3 is a positive constant. When �0 ≤ x̄ ≤ b
and x̄ − a < b − x̄� r�0�x̄� < k is equivalent to

∫ 0

�2x̄−b−�0�/
√

1/n
e−

�t+��0−x̄�/
√

1/n�2

2 dt

∫ �x̄−�0�/
√

1/n

0 e−
�t+��0−x̄�/

√
1/n�2

2 dt

<
k

1− k
� (15)

which is equal to 
x � x̄ − �0 > v4�, where v4 is a positive constant. Note that
2x̄ − �0 − b < a− �0 because of the condition x̄ − a < b − x̄, so comparing the left-
hand sides of (14) and (15), we have v4 > v3.

Moreover, comparing the left-hand sides of (10) and (12), we have v1 > v;
comparing the left-hand sides of (11) and (14), we have v3 > v. Hence if v is greater
than the maximum value of b − �0 and �0 − a, then the rejection region is empty
when an observation belongs to the third case, which implies that the rejection
region is 
x � �x̄ − �0� > v�. A necessary and sufficient condition for v greater than
the maximum value of b − �0 and �0 − a is that k is smaller than the minimum of
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r�0�a� and r�0�b�, because r�0�a� and r�0�b� need to belong to the accept region, which
leads to k less than

Min



∫ �b−a�/

√
1/n

��0−a�/
√

1/n
e−

t2
2 dt

∫ �b−a�/
√

1/n

0 e−
t2
2 dt

�

∫ �b−a�/
√

1/n

�b−�0�/
√

1/n
e−

t2
2 dt

∫ �b−a�/
√

1/n

0 e−
t2
2 dt


 � �

Note that the noncentral t distribution also has a monotone likelihood ratio
in the noncentrality parameter. Therefore, for the variance unknown case, we can
follow a similar argument to that in Theorem 1 to reach Theorem 2.

Theorem 2. Let the assumption be the same as in Theorem 1 except that �2 is unknown.
Then the test derived from the rp-value r1�x̄� is also the UMPU test if k is less than

Min



∫ �b−a�/

√
1/n

��0−a�/
√

1/n
f�t�dt

∫ �b−a�/
√

1/n

0 f�t�dt

�

∫ �b−a�/
√

1/n

�b−�0�/
√

1/n
f�t�dt

∫ �b−a�/
√

1/n

0 f�t�dt


 �

where

f�t� = 1√
��n− 1�

��n/2�
���n− 1�/2�

1
�1+ t2/�n− 1���n/2�

� (16)

Proof. (16) is the density function of a t distribution. By Lehmann (1986), the t

distribution has a monotone likelihood ratio in the noncentrality parameter. The
proof of Theorem 2 can be followed by a similar argument to that of the proof of
Theorem 1. �

Corollary 1. In Theorems 1 and 2, if the bounds satisfy �0 − a = b − �0, the results
hold directly for any 0 < k < 1.

Proof. In the case of �0 − a = b − �0, we have v1 = v2 in the proof of Theorem 1.
The cases of (i) a ≤ x̄ ≤ �0 and x̄ − a > b − x̄, and (ii) �0 < x̄ < b and x̄ − a < b − x̄,
will not happen. This leads to the rejection region being 
x � �x̄ − �0� ≥ v∗�, where v∗

is a positive constant. �

From the above result, the test based on the rp-value is the UMPU test. The
test based on the usual p-value under criterion (7) is also the UMPU test. Therefore,
from the criterion in this section, both the rp-value and the usual p-value are good
measures of evidence from the testing point of view. For the same k, the significance
levels of the two tests based on the p-value and the rp-value are different. The
significance level of the test based on the rp-value cannot be directly calculated
from the argument in the proof of Theorem 1. It can be derived from numerical
calculation. Let x̄ = �0 + h. Then the minimum of c satisfying r�0��0 + h� less than
k is the critical value of the test corresponding to k.
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5. Estimation Criterion

Section 3 gives examples where the rp-value appears to perform better than
the usual p-value. In this section, a more definitive analysis of its performance
characteristics is provided and compared to the usual p-value. The criterion
proposed in Hwang et al. (1992) can be used to evaluate the usual p-value and the
rp-value. Hwang et al. (1992) and Robert (2001) pointed out that it is necessary to
evaluate p-values under an adapted loss.

Let I�� ∈ �0� denote the indicator function

I�� ∈ �0� =
{
1 if � ∈ �0

0 if otherwise�

where �0 is the parameter space of the null hypothesis. Hwang et al. (1992)
suggested evaluating p-values under the squared error loss function

L�e�x�� �� = �e�x�− I�� ∈ �0��
2� (17)

I�� ∈ �0� is used to measure the accuracy of the test. This loss function was first
suggested by Schaarfsma et al. (1989). In Woodroofe and Wang (2000) and Wang
(2004), the evaluation of evidence for testing a hypothesis is based on this loss
function.

In the previous sections, we established some advantages of the rp-value r�0�x̄�.
In this section, we apply the stricter criterion (17). Under this criterion, it will be
shown that �r�0�x̄� has a smaller mean squared error than the usual p-value for all �
belonging to the restricted parameter space, where � is a positive constant belonging
to an interval.

Theorem 3 gives the interval of � such that �r��x� has better performance than
the usual p-value under criterion (17). In the numerical analysis, � can be chosen
as a constant near 1. Therefore we can say that the rp-value has good performance
under this criterion.

Theorem 3. Assume that X has N��� 1� distribution, and the parameter space of � is
�a� b�. Under the loss function (17),

(i) For � = �0, �r��x̄� has a smaller mean squared error than the usual p-value when
� belongs to the interval

E�0
r�0�x̄�±

√
�E�0

r�0�x̄��
2 − E�0

r2�0�X��1− E�0
�p�0

�X�− 1�2�

E�0
r2�0�X�

� (18)

(ii) For � �= �0, �r��x̄� has a smaller mean squared error than the usual p-value when
� belongs to the interval

(
0� min

�∈�a�b��� �=�0

(
E�p

2
�0
�X�

E�r
2
�0
�X�

)1/2)
� (19)

Proof. (i) When � is equal to �0, the indicator function I�� = �0� is 1. If � satisfies

E�0
�p�0

�X�− 1�2 − E�0
��r�0�x̄�− 1�2 > 0� (20)
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Table 5.1
Assume that X has a N�0� 1� distribution and the

parameter space of � is �−2� 2�. For testing H0 � �0 = 0
versus H1 � �0 �= 0, the mean squared errors E� (p value

−I�� = 0��2 of the usual p-value and c-value with
� = 1�0049 corresponding to � in the parameter space
are listed. The results are based on 5000 replications

�0 MSE of p-value MSE of rp-value

0 0.33333 0.33332
0.1 0.33199 0.33173
0.3 0.32144 0.32119
0.6 0.28829 0.28805
1 0.22288 0.22269
1.5 0.13519 0.13508
2 0.06752 0.06750

�r�0�x̄� is better than the usual p-value. By straightforward calculation, (20) is
equivalent to

�2E�0
r2�0�X�− 2�E�0

r�0�x̄�+ 1− E�0
�p�0

�X�− 1�2 < 0�

Hence if � satisfies condition (18), (20) holds directly.

(ii) When � �= �0, the indicator function I�� = �0� is 0. If � satisfies

E�p
2
�0
�X�− �2E�r

2
�0
�X� > 0 for � �= �0� (21)

then r�0�x̄� is better than the usual p-value. By a straightforward calculation, the set
of � satisfying (21) is equivalent to (19), where � is a positive number. �

We can also have a similar result for the variance unknown case if r�0�x̄� and
p�0

�X� in Theorem 3 are replaced by r ′�0�X� and p′
�0
�X�.

Table 5.2
The assumption is the same as in Table 5.1 except that
the parameter space is (−1�5� 1�5) and � = 1�015. The

results are also based on 5000 replications

�0 MSE of p-value MSE of rp-value

0 0.33333 0.33209
0.3 0.32144 0.30932
0.6 0.28829 0.27747
0.9 0.24056 0.23163
1.2 0.18684 0.18010
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Table 5.3
The assumption is the same as in Table 5.1 except that the

parameter space is �−1� 1� and � = 1�03. The results are also
based on 5000 replications

�0 MSE of the usual p-value MSE of the modified p-value

0 0.33333 0.32154
0.3 0.32144 0.28807
0.6 0.28829 0.25947
0.9 0.24056 0.21833

Theorem 4. Assume that X has N��� �2� distribution, where �2 is unknown, and the
parameter space of � is �a� b�. Then the results in Theorem 1 hold when r�0�x̄� and
p�0

�X� are replaced by r ′�0�X� and p′
�0
�X�.

Corollary 2. From Theorem 3, if there exists an � such that both conditions (i) and
(ii) in Theorem 3 are satisfied, then the �r�0�x̄� is better than the usual p-value for all
� in the parameter space �a� b�.

From Theorems 3 and 4 and Corollary 2, we do numerical analysis for the
interval of � as follows. Note that the endpoints of (18) and (19) can be calculated
by software such as Mathematica. Here we discuss cases when �0 − a = b − �0. For
general cases, the lower bound a can be chosen to be smaller and the upper bound
b can be chosen to be larger, so that �0 − a = b − �. Let m = �0 − a = b − �0. We
found that the minimal value of (17) always happens at b. In Theorem 3, if there
exists an � such that (18) and (19) hold simultaneously, �r�0�x̄� dominates p�0

�X�
for estimating I�� = �0� under the squared error loss function (17). Consider the case
of m = 1 in Theorem 3; then the two intervals (18) and (19) of � are �0�9974� 2�2406�
and �0� 1�048�. Thus, if � belongs to �0�9974� 1�048�, �r�0�x̄� is better than the usual
p-value for all � from the estimation point of view. If m = 2, the two intervals of �
are �1�0049� 2�0114� and �0� 1�00501�; hence r�0�x̄� is better than the usual p-value
for � ∈ �1�0049� 1�0051�. For the case of �2 unknown, by Theorem 4, � can be
chosen by a similar argument to that in the case of �2 known. Tables 5.1–5.3 show
the mean squared errors of the usual p-value and the rp-value for the cases of m =
1� 1�5, and 2. As can be seen from the tables, the simulation results are consistent
with the theoretical results that the rp-value is better than the usual p-value for all
� in the parameter space.
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