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Abstract

Simultaneous confidence intervals for multinomial proportions are useful in many areas of science. Since
1964, approximate simultaneous 1−� confidence intervals have been proposed for multinomial proportions.
Although at each point in the parameter space, these confidence sets have asymptotic 1 − � coverage
probability, the exact confidence coefficients of these simultaneous confidence intervals for a fixed sample
size are unknown before.

In this paper, we propose a procedure for calculating exact confidence coefficients for simultaneous
confidence intervals of multinomial proportions for any fixed sample size. With this methodology, exact
confidence coefficients can be clearly derived, and the point at which the infimum of the coverage probability
occurs can be clearly identified.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let X1, X2, . . . , Xk be observed cell frequencies in a sample of size N = ∑k
i=1 Xi from a

multinomial distribution M(N, p1, . . . , pk−1) with cell probabilities p1, . . . , pk , and observa-
tions X = (X1, . . . , Xk), where pk = 1 − p1 · · · − pk−1. The problem of finding simultaneous
confidence intervals for p1, . . . , pk was developed in the 1960s. Miller [7] gave a survey of
this work, including the result of Goodman [4] and Quesenberry and Hurst [8]. Fitzpatrick and
Scott [2] and Sison and Glaz [9] also proposed several simultaneous confidence intervals for
p1, p2, . . . , pk .
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The confidence coefficients of these simultaneous confidence intervals are defined as the infi-
mum of the coverage probabilities of these intervals in the parameter space � = {(p1, . . . , pk)|0�
pi �1, i = 1, . . . , k,

∑k
i=1 pi = 1}. Usually, the exact confidence coefficients of these simul-

taneous confidence intervals are unknown since the infimum of the coverage probabilities may
occur at any point in �. We do not know at which point in the parameter space the infimum of the
coverage probability occurs. When N is large, a nominal coefficient is suggested as an approxi-
mation. However, for fixed N, the nominal coefficient may be much larger than its exact value. By
applying other approaches to approximate the confidence coefficient, we can obtain an estimate,
but not the exact value. Fitzpatrick and Scott [2] derived a lower bound for the asymptotic simul-
taneous confidence level of their confidence intervals. With this lower bound, the performance of
the simultaneous confidence intervals is more apparent when the sample size is large. However,
it is a lower bound for asymptotic coverage probability, and not the exact confidence coefficient
for any sample size. Moreover, the confidence coefficients of other intervals are still unknown.

Thus, we propose a method for calculating the exact confidence coefficients of simultaneous
confidence intervals for p1, . . . , pk−1 for any fixed sample size in this paper. Note that since
pk = 1−p1 · · ·−pk−1 for the multinomial distribution, it is natural to consider the simultaneous
confidence intervals for p1, . . . , pk−1 because there are only k − 1 variables indeed. Like in the
binomial distribution (k = 2), we are interested in constructing a confidence interval for p1 instead
of simultaneous confidence intervals for p1 and p2. With this proposed method, we only need to
calculate the coverage probabilities at some finite points in the parameter space. The minimum
of these coverage probabilities is the exact confidence coefficient, and not just an estimate.

Note that for the binomial distribution, it is a special case of this paper. A related result for
calculating the confidence coefficients of confidence intervals for a binomial proportion is referred
to Wang [10]. The techniques used for the binomial distribution cannot be directly applied to
the multinomial distribution with k > 2 because there is only one variable and one unknown
parameter p1 involved. For the multinomial distribution case with k > 2, there are at least two
dependent variables involved which causes that the derivation for the confidence coefficients of
simultaneous confidence intervals for the multinomial distribution is much more difficult than
that for the binomial distribution.

Methodology for calculating the exact confidence coefficient of the simultaneous confidence
intervals is provided in Section 2. With this method, the exact confidence coefficient can be
clearly derived, and the point at which the infimum of the coverage probabilities occurs can be
identified. Section 3 provides a review of the simultaneous confidence intervals in the literature.
In Section 4, the computation of the proposed method is illustrated using an example. Using the
proposed procedure, the exact confidence coefficients of some simultaneous confidence intervals
are presented. Simulation results to reinforce Theorem 1 are given in Section 5. The simulation
results reveal that the minimum value of the coverage probabilities at many randomly chosen
points in the parameter space is still larger than the value derived from the proposed method,
which requires calculations on far fewer points.

2. The main result

Let I (X) = (I 1(X), . . . , I k−1(X)), where I j (X) = (Lj (X), Uj (X)), j = 1, . . . , k − 1
be simultaneous confidence intervals of p1, . . . , pk−1. Let p̂i = Xi/N denote the maximum
likelihood estimator of pi . Assume that, for fixed N, Lj (X) depends on p̂j , but does not depend
on p̂i , i �= j . We say that Lj (X) has the same form as Li(X) if Lj (X) is the same as Li(X)

when the term p̂j in Lj (X) is replaced by p̂i , and we say that Uj(X) has the same form as
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Ui(X) if Uj(X) is the same as Ui(X) when the term p̂j in Uj(X) is replaced by p̂i . In this
paper, we assume that Lj (X) and Uj(X) have the same form as Li(X) and Ui(X) for i �= j ,
respectively.Assumption 1 covers some conditions for simultaneous confidence intervals required
by Theorem 1.

Assumption 1.

(i) For fixed N, Lj (X) and Uj(X) depend on p̂j , but do not depend on p̂i , i �= j .
(ii) For fixed N, Lj (X) and Uj(X) are increasing functions of p̂j .

(iii) When p̂j = 0, Lj (X)�0�Uj(X).
(iv) For any fixed p∗ = (p∗

1, . . . , p∗
k−1) in the parameter space, there exists an x0 such that

p∗ ∈ I (x0), and Pp∗(X = x0) > 0.

If simultaneous confidence intervals I (X) do not satisfy the fourth condition, the confidence
coefficient is zero.

Before proving the main result, concerning the derivation of the confidence coefficient of
simultaneous confidence intervals for p1, . . . , pk−1, we define notations and give some lemmas.
Let

Sa1,...,ak−1,b1,...,bk−1(x1,...,xk−2)(p1, . . . , pk−1)

=
b1∑

x1=a1

· · ·
bi (x1,...,xi−1)∑

xi=ai

· · ·
bk−1(x1,...,xk−2)∑

xk−1=ak−1

N !
x1! · · · xk−1!(N − x1 − · · · − xk−1)!p

x1
1 p

x2
2

· · ·
⎛
⎝1 −

k−1∑
j=1

pj

⎞
⎠

(N−x1−···−xk−1)

(1)

denote the sum of the probabilities of the set

O = {(x1, . . . , xk−1) : a1 �x1 �b1, ai �xi �bi(x1, . . . , xi−1), i = 2, . . . , k − 1}, (2)

with cell probabilities (p1 . . . pk−1), where a1 �0, b1 �a1, ai �0 and bi(x1, . . . , xi−1) is a func-
tion of x1, . . . , xi−1 not less than ai , and x1 + · · · + xk−2 + bk−1(x1, . . . , xk−2)�N . Note that
(1) is a function depending on p1, . . . , pk−1, a1, . . . , ak−1 and b1, . . . , bk−1(x1, . . . , xk−2). To
simplify the notations, Sa1,...,ak−1,b1,...,bk−1(x1,...,xk−2)(p1, . . . , pk−1) is replaced by

S(p1, . . . , pk−1) (3)

in the rest of the paper.
Let

S(pk−1|p1, . . . , pk−2) (4)

denote function (3) for fixed p1, . . . , pk−2, which is a curve of pk−1 in the surface (3).

Lemma 1. Let W ∗ = {(p1, . . . , pk−1) : 0 < pi < 1, i = 1, . . . , k − 1, p1 + · · · + pk−1 < 1}.
When bi(x1, . . . , xi−1), i = 1, . . . , k − 2 are constants and satisfy a1 = b1, . . . , ak−2 = bk−2
in (3), which implies that bk−1(x1, . . . , xk−2) is a constant, say bk−1, then for p ∈ W ∗:

(i) (4) is a unimodal function of pk−1 with one maximum if ak−1 is greater than zero
and b1 + · · · + bk−1 is less than N;
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(ii) (4) is a decreasing function of pk−1 if ak−1 is zero; and
(iii) (4) is an increasing function of pk−1 if b1 + · · · + bk−1 is N.

In Lemma 1, we discussed the special case of a1 = b1, . . . , ak−2 = bk−2. In Lemma 2, we
discuss a general case.

Lemma 2. Assume that W ∗ is the same as in Lemma 1. If bi(x1, . . . , xi−1) > ai for some
i ∈ 1, . . . , k − 2, then for p ∈ W ∗:

(i) (4) is a unimodal function or an increasing function of pk−1 if ak−1 is greater than zero, and
x1 + · · · + bk−1(x1, . . . , xk−2) < N ;

(ii) (4) is a decreasing function of pk−1 if ak−1 is zero; and
(iii) (4) is an increasing function of pk−1 if x1 + · · · + xk−2 + bk−1(x1, . . . , xk−2) = N .

Lemma 3. For a subset in the parameter space separated by the endpoints in each pi-axis of the
simultaneous confidence intervals satisfying (i) and (ii) of Assumption 1, without other endpoints
of the confidence intervals in the interior of this subset, there exist constants ai and functions
bi(x1, . . . , xi−1), i = 1, . . . , k−1 such that the coverage probabilities of the confidence intervals
at the points in this subset are given by (1).

The main result of this paper is briefly described as follows. For fixed N and specified si-
multaneous confidence intervals, there are (N + 1) confidence intervals for pi corresponding to
Xi = 0, . . . , N . There are 2(N +1) endpoints of these (N +1) confidence intervals. Assume that
there are g endpoints between 0 and 1 out of these 2(N + 1) endpoints. Rank these g endpoints
from the smallest value to the largest value, say v1, . . . , vg . The interval (0, 1) can be separated
into (g + 1) intervals by these g endpoints. The set {p = (p1, . . . , pk−1) : 0�pi �1, i =
1, . . . , k − 1,

∑k−1
i=1 pi �1} can be separated into at most (g + 1)k−1 subsets, see Fig. 1 for the

k = 3 case.

p
2

1

vg

vj

vi

v2

v1

p
1

0 1v1 vi vgv2 vj

Fig. 1. For k = 3, the parameter space can be separated at most into (g + 1)2 subsets. Each subset has four endpoints.
The circles are the endpoints in E1 of Theorem 1, and the triangles are the endpoints in E2 of Theorem 1.
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From Fig. 1, it is clear that the subset separated by the points vi and vj in the p1-axis and
the point vi′ and vj ′ in the p2-axis has four endpoints (vi, vi′), (vi, vj ′), (vj , vi′), (vj , vj ′). The
endpoints of these subsets , which are in the interior of the parameter space, are the set {(m1, m2) :
m1 + m2 < 1, mi = vj , 1�j �g, i = 1, 2}, which are the circles in Fig. 1. The set {(m1, m2) :
m1 = vj , 1�j �g, m2 = 1 − m1} is the set of triangles in Fig. 1. E1 and E2 in Theorem 1
are generations of the above two sets to the general k case. Theorem 1 shows that the minimum
coverage probability is the minimum value of the coverage probabilities at the points in E1 ∪E2.

Theorem 1. Let X have a multinomial distribution M(N, p1, . . . , pk−1) and I (X) be simultane-
ous confidence intervals satisfying Assumption 1. Let p = (p1, . . . , pk−1) and W = {L1(X1 =
0), L1(X1 = 1), . . . , L1(X1 = N), U1(X1 = 0), U1(X1 = 1), . . . , U1(X1 = N)}. Assume that
there are g points in W which are greater than 0 and less than 1. Then rank the g points from the
smallest value to the largest value, say v1, . . . , vg . Let

E1 = {p = (m1, . . . , mk−1) : mi = vj for i = 1, . . . , k − 1, j = 1, . . . , g,

m1 + · · · + mk−1 < 1},
and

E2 = {p = (m1, . . . , mk−1) : mi = vj for i = 1, . . . , k − 2, j = 1, . . . , g,

m1 + · · · + mk−2 �1, mk−1 = 1 − m1 − · · · − mk−2},
then the infimum coverage probability, confidence coefficient, is the minimum value of the coverage
probabilities at the points in E1 ∪ E2.

Remark 1. E1 ∪ E2 is equal to the set

E1 = {p = (m1, . . . , mk−1) : mi = vj for

i = 1, . . . , k − 1, j = 1, . . . , g, m1 + · · · + mk−1 �1},
for some simultaneous confidence intervals, such as I3,� and I4,� in Section 4 for the k = 3 case
because for each lower endpoint, there exists an upper endpoint such that the sum of these two
points is one.

According to this result in Theorem 1, the procedure for establishing confidence coefficients is
as follows:
Procedure for establishing confidence coefficients for simultaneous confidence intervals of
multinomial proportions.

Step 1: Check if the simultaneous confidence intervals satisfy Assumption 1. If the fourth
condition in Assumption 1 is not satisfied, then the exact confidence coefficient is zero.

Step 2: Calculate the coverage probabilities at the points of (E1 ∪ E2) in Theorem 1.
Step 3: Calculate the minimum value of the probabilities in Step 2. This value is the exact

confidence coefficient.

Remark 2. In Step 2, when k is large, it may be not easy to calculate the coverage probabilities at
the points of (E1 ∪E2). In this case, these probabilities can be approximated by using simulation.

3. Simultaneous confidence intervals

In this section, we will review some simultaneous confidence intervals for multinomial pro-
portions that have been given in the literature. The maximum likelihood estimators of pj are
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p̂j = Xj/N , j = 1, . . . , k. The random vector (p̂1, . . . , p̂k) has an asymptotic multivariate nor-
mal distribution with mean vector (p1, . . . , pk) and covariance matrix �/N , where the elements
in � are

�jj = pj (1 − pj ),

and

�jj ′ = −pjpj ′ for j �= j ′.

The simultaneous confidence intervals of (p1, . . . , pk) proposed by Gold [3] are

I ′
1,� =

(
I 1

1,�, I
2
1,�, . . . , I

k
1,�

)
,

where

I
j
1,� =

(
p̂j −

(
�2
k−1,�

)1/2 [p̂j (1 − p̂j )/N ]1/2, p̂j +
(
�2
k−1,�

)1/2 [p̂j (1 − p̂j )/N ]1/2
)

.

Goodman [4] considers the Bonferroni intervals I ′
2,� =

(
I 1

2,�, . . . , I
k
2,�

)
, where

I
j
2,� =

(
p̂j − z�/2k[p̂j (1 − p̂j )/N ]1/2, p̂j + z�/2k[p̂j (1 − p̂j )/N ]1/2

)
,

and z�/2k denotes the upper �/2k cutoff point of a standard normal distribution. Quesenberry and
Hurst [8] proposed their intervals based on the �2 statistics

k∑
j=1

(
Xj − Npj

)2
Npj

, (5)

which is asymptotically distributed as a �2 distribution with k − 1 degrees of freedom. Note that
(5) is equal to N(p̂1 − p1, . . . , p̂k − pk)

′�−1(p̂1 − p1, . . . , p̂k − pk) (referred to by Miller [7]).
The simultaneous (1 − �) confidence intervals considered by Quesenberry and Hurst [8] are

I ′
3,� =

{
pj : |p̂j − pj |√

pj (1 − pj )/N
< (�2

k−1,�)
1/2, j = 1 · · · k

}
.

Solving the equation p̂j −
(
�2
k−1,�

)1/2 [pj (1 − pj )/N ]1/2 = pj , I
j
3,� can be rewritten as

I
j
3,� =

(
c + 2Np̂j −√

c2 + 4Nc(1 − p̂j )p̂j

2(c + N)
,
c + 2Np̂j +√

c2 + 4Nc(1 − p̂j )p̂j

2(c + N)

)
,

where c = �2
k−1,�.

The other two approaches are proposed by Fitzpatrick and Scott [2] and Sison and Glaz [9].

Fitzpatrick and Scott [2] proposed the simultaneous confidence intervals I ′
4,� =

(
I 1

4,�, . . . , I
k
4,�

)
,
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where

I
j
4,� =

(
p̂j − z�/2

2
√

N
, p̂j + z�/2

2
√

N

)
. (6)

A lower bound for the asymptotic simultaneous confidence level of (6) is also given in their paper.
Another simultaneous intervals based on the approximation for multinomial probabilities by

Levin [6] is proposed by Sison and Glaz [9]. They considered the region I ′
5,� =

(
I 1

5,�, . . . , I
k
5,�

)
,

where

I
j

5,� = (
p̂j − b/N, p̂j + (b + 2r)/N

)
,

and b�1 and r are two values depending on the observations given in Sison and Glaz [9]

4. Confidence coefficients

The intervals I ′
i,�, i = 1, . . . , 5 proposed in the literature are simultaneous confidence intervals

of p1, . . . , pk constructed by an approximation approach, and are not exact 1 − � confidence
intervals. Since we consider the simultaneous confidence intervals of p1, . . . , pk−1 in this paper,
let Ii,� denote the simultaneous confidence interval (I 1

i,�, . . . , I
k−1
i,� ), for i = 1, . . . , 5. In this

section, we will employ the methodology in Section 2 to calculate the exact confidence coefficients
of Ii,� for some i. First, note that I1,� and I2,� do not satisfy conditions (ii) in Assumption 1, thus
the methodology cannot be applied to these two intervals. From Fitzpatrick and Scott [2] and
Sison and Glaz [9], I1,� and I2,� have worse performance than the other three simultaneous
confidence intervals. In fact, the confidence coefficients of these two intervals are zero, as shown
in Theorem 2.

Theorem 2. The confidence coefficients of simultaneous confidence intervals I1,� and I2,� are
zero.

Proof. Using the result for the binomial case in Lehmann and Loh [5] and Blyth and Still [1], for
k = 2, we have

inf
p1∈(0,1)

Pp1

(
p1 ∈ I 1

i,�

)
= 0 for i = 1, 2 (7)

for all �.
For k�2, we have

inf
p∈�

Pp(p ∈ I1,�)� inf
p1

Pp1(p1 ∈ I 1
1,�) = 0, (8)

because Pp(p ∈ I1,�)�Pp1(p1 ∈ I 1
1,�). Thus, the confidence coefficients of Ii,�, i = 1, 2 are

zero. �

We can provide an intuitive explanation of the result of Theorem 2 by observing the behavior
of the intervals when X1 = 0. For the intervals I1,� and I2,�, I 1

1,� and I 2
1,� are (0, 0) when X1 = 0.

When p1 is close to zero, the probability of any observation greater than zero is close to zero
because

(
n
x

)
px

1 (1 − p1)
n−x goes to zero as p1 goes to zero. Since (0, 0) does not contain any

points p1 ∈ (0, 1), therefore, the coverage probabilities of I1,� and I2,� go to zero as p1 goes to
zero. Consequently, the infimum coverage probabilities of I1,� and I2,� are zero.
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The lower and upper endpoints of I
j
3,� and IJ

4,� satisfy conditions (i)–(iii) in Assumption 1.

Differentiating the lower bound of I
j
3,� with respect to p̂j , gives

�Lj (X)/�p̂j = N(c2 + 4Nc(1 − p̂j )p̂j )
−1/2

c + N

×[(c2 + 4Nc(1 − p̂j )p̂j )
1/2 − (c − 2cp̂j )]

� 0

for all N. This implies that the lower bound of I
j
3,� is an increasing function of p̂j for all N. By a

straightforward calculation, the upper bound of I
j
3,�, and the lower and upper bounds of I

j
4,� are

also increasing functions of p̂j for all N. The procedure to derive the exact confidence coefficient
of I3,� is illustrated by an example.

Example 1. Let X = (X1, X2, X3) have a multinomial distribution M(N, p1, p2), where N = 5.
Consider the simultaneous confidence intervals I3,� of the probabilities, p1, p2, where � = 0.05.
Applying the procedure in Section 2 to compute the confidence coefficient, we list the confidence
intervals of p1, corresponding to X1 = 0, 1, . . . , 5, which are (0, 0.5451016), (0.02595312,

0.7011078), (0.08872917, 0.8202911), (0.17970885, 0.9112708), (0.29889218, 0.9740469) and
(0.45489843, 1). It is clear that the intervals satisfy Assumption 1. Although Assumption 1 is for
simultaneous confidence intervals of (p1, p2), we only need to check the confidence intervals for
p1 because the forms of confidence intervals are the same for p1 and p2. The ranked endpoints
of these six intervals from smallest to largest value are 0, 0.02595312, . . . , 0.9740469, 1. Let
v1 = 0.0259312, v2 = 0.08872917, . . . , v9 = 0.9112708, v10 = 0.9740469, which are the
endpoints between 0 and 1. Then by step 2 of the procedure, we need to compute the coverage
probabilities at the points in the sets E1 ∪ E2 = {(p1, p2) = (m1, m2) : m1 = vi, m2 =
vj , 1� i�10, 1�j �10, m1 + m2 �1}. In this case, there are 47 points in E1 ∪ E2. Therefore,
there are 47 coverage probabilities that need to be calculated. The minimum value of these 47
coverage probabilities is 0.766. However, less than 47 coverage probabilities actually need to be
calculated because the coverage probabilities at the points (vi, vj ) and (vj , vi) are the same.

Note that the confidence coefficient for I ′
i,�, i = 1, . . . , 5 should be less than that for Ii,�. The

proposed procedure cannot be directly applied to compute the confidence coefficient for I ′
i,�. The

derivation of computing the exact confidence coefficient for I ′
i,� needs further investigations.

From Tables 1 and 2, the confidence coefficients for I4,� are higher than I3,�. Confidence
coefficients for I3,� and I4,� do not vary a lot with changing sample sizes. The simultaneous
confidence intervals I5,� do not satisfy condition (ii) in Assumption 1 just as I1,� and I2,�. Since
the result of Theorem 2.1 in Sison and Glaz [9] is for I ′

5,�, we calculate the coverage probabilities of
I ′

5,�, instead of I5,�, at some randomly chosen points in the parameter space, and have a minimum
coverage probability of 0.3091 at the point (p1, p2) = (0.0031, 0.9824) for k = 3 and N = 25.
This implies that the exact confidence coefficient is smaller than 0.309. By checking cases for
some k and N, we conjecture that the confidence coefficient of I5,� is greater than zero because it
satisfies condition (iv) in Assumption 1. By calculating the minimum coverage probability of I ′

3,�
and I ′

4,� at randomly chosen points in the parameter space, the minimum coverage probabilities
of I ′

3,� and I ′
4,� are about 0.788 and 0.869, for N = 25 and k = 3, which are higher than I ′

5,�. Note
that, in this case, the confidence coefficient of I ′

4,� is higher than the exact confidence coefficient
of I4,� is due to simulation error.
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Table 1
The table gives the exact confidence coefficients for I3,0.05 corresponding to different N for k = 3

N Confidence coefficient (p1, p2)

5 0.7660488 (0.02595312, 0.02595312)

10 0.7708778 (0.01284343, 0.01284343)

15 0.772429 (0.00853351, 0.00853351)

20 0.773194 (0.00638945, 0.00638945)

25 0.7736498 (0.00510646, 0.00510646)

30 0.7739523 (0.00425256, 0.00425256)

50 0.774554 (0.00254816, 0.00254816)

100 0.7750025 (0.00127282, 0.00127282)

The points (p1, p2) are the points at which the minimum coverage probability occurs.

Table 2
The table gives the exact confidence coefficients for I4,0.05 corresponding to different N for k = 3

N Confidence coefficient (p1, p2)

5 0.8783224 (0.3617386, 0.3617386)

10 0.8971484 (0.3901024, 0.3901024)

15 0.8914067 (0.4136361, 0.4136361)

20 0.8898067 (0.3808693, 0.4308693)

25 0.8917298 (0.4040035, 0.4040035)

30 0.8970429 (0.4210805, 0.3877472)

50 0.899548 (0.4214095, 0.4014095)

100 0.9110785 (0.4120017, 0.4120017)

The points (p1, p2) are the points at which the minimum coverage probability occurs.

The lower bound for the asymptotic coverage probability of I ′
4,� in Fitzpatrick and Scott [2] is

1 − 2� for ��0.016 and 6�(3z�/2/
√

8) − 5 for 0.016���0.15. They conjecture that 1 − 2� is
actually a lower bound for all values of �. Although the confidence coefficient result for I4,� in this
paper is not directly related to the confidence coefficient for I ′

4,�, from Table 2, their conjecture
may be correct because the exact confidence coefficient is greater than 1−2� = 0.9 for I4,� when
N = 100.

Note that the programs for computing the exact confidence coefficients are available from the
author upon request.

5. Simulations

The result of Theorem 1 is also examined by conducting simulations to calculate the minimum
coverage probability of coverage probabilities at randomly chosen points in the parameter space
�. For k = 3 and N = 20, the minimum coverage probability of I3,0.05 is 0.77824 at one million
randomly chosen points in the parameter space. The exact confidence coefficient derived by the
procedure proposed in this paper is 0.773194031, which is the minimum value of 192 coverage
probabilities at E1 ∪ E2. For k = 3 and N = 20, the minimum coverage probability of I4,0.05 is
0.8898634 at one million randomly chosen points in the parameter space. The exact confidence
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coefficient derived by the procedure proposed in this paper is 0.8898067, which is the minimum
value of 178 coverage probabilities at points in E1 ∪ E2. The simulation results show that even
considering 106 randomly chosen points in the parameter space, the minimum value of these
coverage probabilities is near the exact confidence coefficient, but still cannot reach the exact
value of the confidence coefficient. The simulation calculation is much more time-consuming
than the proposed method, which calculates at far fewer points.

6. Conclusion

In this paper, a procedure for calculating the exact confidence coefficient is proposed, and we
apply this procedure to derive the exact confidence coefficients of some simultaneous confidence
intervals, which were previously unknown. Compared with other approaches that only provide an
estimate of confidence coefficients, this method provides an efficient and accurate way to obtain
confidence coefficients.
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Appendix A.

Note that for h ∈ (2, . . . , k − 1), set (2) can be represented as

{(x1, . . . , xk−1) : a′
1 �x1 �b′

1, a
′
i �xi �b′

i (x1, . . . , xh−1, xh+1, . . . , xi−1), i = 1, . . . ,

h − 1, h + 1, . . . , k − 1, a′
h �xh �b′

h(x1, . . . , xh−1, xh+1, . . . , xk−1)},
where a′

1 �0, b′
1 �a′

1, a
′
i �0 and b′

h(x1, . . . , xh−1, xh+1, . . . , xk−1) is a function of x1, . . . , xh−1,

xh+1, . . . , xk−1 not less than a′
h, and x1 + · · · + xk−1 + b′

h(x1, . . . , xh−1, xh+1, . . . , xk−1)�N .
Thus, (3) can be represented as

S(p1, . . . , pk−1)

=
b′

1∑
x1=a′

1

· · ·
b′
k−1(x1,...,xh−1,xh+1,...,xk−2)∑

xk−1=a′
k−1

b′
h(x1,...,xh−1,xh+1,...,xk−1)∑

xh=a′
h

× N !
x1! · · · xk−1!(N − x1 − · · · − xk−1)!

×p
x1
1 · · · pxh−1

h−1 p
xh+1
h+1 · · · pxk−1

k−1 p
xh

h

⎛
⎝1 −

k−1∑
j=1

pj

⎞
⎠

(N−x1−···−xk−1)

. (9)

Then

S(ph|p1, . . . , ph−1, ph+1, . . . , pk−1) (10)
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denotes function (9) for fixed p1, . . . , ph−1, ph+1, . . . , pk−1. If h = 1 in (9), (9) and (10) are
equal to

S(p1, . . . , pk−1)

=
b′

2∑
x2=a′

2

· · ·
b′
k−1(x2,...,xk−2)∑

xk−1=a′
k−1

b′
1(x2,...,xk−1)∑

x1=a′
1

N !
x1! · · · xk−1!(N − x1 − · · · − xk−1)!

×p
x2
2 · · · pxk−1

k−1 p
x1
1

⎛
⎝1 −

k−1∑
j=1

pj

⎞
⎠

(N−x1−···−xk−1)

, (11)

and S(p1|p2, . . . , pk−1), which denotes function (11) for fixed p2, . . . , pk−1, respectively.
The following three lemmas are for (3) and (4), the case of h = k − 1. The results of Lemmas

1–3 can be applied to (9) and (10) for general h.

Proof of Lemma 1. (i) We first consider the case of ak−1 > 0 and b1 + · · · + bk−1 < N . Since
a1 = b1, . . . , ak−2 = bk−2, (3) equals

bk−1∑
xk−1=ak−1

N !
a1! · · · xk−1!(N − a1 · · · − ak−2 − xk−1)!p

a1
1

· · · pxk−1
k−1

⎛
⎝1 −

k−1∑
j=1

pj

⎞
⎠

(N−a1···−xk−1)

.

For any fixed a1, . . . , ak−2 and p1, . . . , pk−2, differentiating S(pk−1|p1, . . . , pk−2) with respect
to pk−1, gives

�S(pk−1|p1, . . . , pk−2)

�pk−1

= ak−1N !
a1! · · · ak−1!(N − a1 · · · − ak−1)!p

a1
1 · · · pak−1−1

k−1

⎛
⎝1 −

k−1∑
j=1

pj

⎞
⎠

(N−a1···−ak−1)

− (N − a1 · · · − bk−1)N !
a1! · · · bk−1!(N − a1 · · · − bk−1)!p

a1
1 · · · pbk−1

k−1

⎛
⎝1 −

k−1∑
j=1

pj

⎞
⎠

(N−a1···−bk−1)−1

(12)

= N !pa1
1 · · · pak−1−1

k−1

⎛
⎝1 −

k−1∑
j=1

pj

⎞
⎠

N−a1···−ak−1

×
(

ak−1

a1! · · · ak−1!(N − a1 · · · − ak−1)!

− (N − a1 · · · − bk−1)(pk−1/(1 −∑k−1
j=1 pj ))

bk−1−ak−1+1

a1! · · · bk−1!(N − a1 · · · − bk−1)!

)
. (13)



H. Wang / Journal of Multivariate Analysis 99 (2008) 896–911 907

Eq. (12) holds because middle terms are canceled, leaving only the first and the last terms. For
deriving the unimodal property, it is necessary to solve Eq. (13) set to 0, which is equivalent to
the equation

A = pk−1

/⎛
⎝1 −

k−1∑
j=1

pj

⎞
⎠ , (14)

where

A =
(

ak−1

(N − a1 · · · − bk−1)

bk−1!(N − a1 · · · − bk−1)!
ak−1!(N − a1 · · · − ak−1)!

)1/bk−1−ak−1+1

.

Solving (14) with respect to pk−1, we have a maximum of pk−1 at

u = A(1 −∑k−2
j=1 pj )

1 + A
. (15)

Since ak−1 > 0, a1 + · · · + bk−1 < N , and pk−1/(1 − ∑k−1
j=1 pj ) is an increasing function of

pk−1 for fixed p1, . . . , pk−2, (13) is less than zero if pk−1 > u, and (13) is greater than zero if
pk−1 < u. Thus, for fixed p1, . . . , pk−2, (4) is a unimodal function with a maximum at (15) when
a1 = b1, . . . , ak−2 = bk−2.

(ii) When ak−1 = 0, (13) is not greater than zero. Consequently, (4) is decreasing in pk−1.
(iii) When a1 + · · · + ak−2 + bk−1 = b1 + · · · + bk−2 + bk−1 = N , (13) is not less than zero.

Consequently, (4) is an increasing function. �

Proof of Lemma 2. First, consider case (i). For fixed pi, . . . , pk−2, differentiating (4) with re-
spect to pk−1, gives

�S(pk−1|p1, . . . , pk−2)

�pk−1

= N !pak−1−1
k−1

b1∑
x1=a1

· · ·
bk−2(x1,...,xk−3)∑

xk−2=ak−2

p
x1
1 · · · pxk−2

k−2

×
⎛
⎝1 −

k−1∑
j=1

pj

⎞
⎠

N−x1···−ak−1 (
ak−1

x1! · · · ak−1!(N − x1 · · · − ak−1)!

− (N − x1 · · · − bk−1(x1, . . . , xk−2))(pk−1/(1 −∑k−1
j=1 pj ))

bk−1(x1,...,xk−2)−ak−1+1

x1! · · · bk−1(x1, . . . , xk−2)!(N − x1 · · · − bk−1(x1, . . . , xk−2))!

)
,

(16)

which is a summation of higher order polynomials in pk−1.
Unlike (13), which is only one higher order polynomial and is easy to solve, it is difficult to use

an argument similar to that used in Lemma 1 to solve Eq. (16) set to 0 since it does not have a closed



908 H. Wang / Journal of Multivariate Analysis 99 (2008) 896–911

form. Although it is difficult to know the exact value of the root, for proving the unimodal property
of (4), it is only necessary to show that there is only one root of pk−1 of Eq. (16) set to 0. To show
this, let

Ba1,...,ak−1,b1,...,bk−1(x1,...,xk−2)(pk−1)

=
b1∑

x1=a1

· · ·
bk−2(x1,...,xk−3)∑

xk−2=ak−2

p
x1
1 · · · pxk−2

k−2 (1 −∑k−1
j=1 pj )

−x1···−ak−1ak−1

x1! · · · ak−1!(N − x1 · · · − ak−1)! ,

which are the positive terms divided by N !pak−1−1
k−1 (1 −∑k−1

j=1 pj )
N in (16), and let

Ca1,...,ak−1,b1,...,bk−1(x1,...,xk−2)(pk−1)

=
b1∑

x1=a1

· · ·
bk−2(x1,...,xk−3)∑

xk−2=ak−2

× (N − x1 · · · − bk−1(x1, . . . , xk−2))p
x1
1 · · · pxk−2

k−2 (1 −∑k−1
j=1 pj )

−x1···−bk−1(x1,...,xk−2)

x1! · · · bk−1(x1, · · · xk−2)!(N − x1 · · · − bk−1(x1, . . . , xk−2))!
× p

bk−1(x1,...,xk−2)−ak−1+1
k−1 ,

which are the negative terms divided by N !pak−1−1
k−1 (1 − ∑k−1

j=1 pj )
N in (16). To simplify the

notations, we use B(pk−1) and C(pk−1) to replace

Ba1,...,ak−1,b1,...,bk−2(x1,...,xk−3)(pk−1),

and Ca1,...,ak−1,b1,...,bk−2(x1,...,xk−3)(pk−1) in the rest of the proof. Note that for fixed p1, . . . , pk−2,
C(pk−1) is an increasing function of pk−1 because pk−1 and 1/(1 − ∑k−1

j=1 pj ) are increasing
functions of pk−1. B(pk−1) is also an increasing function of pk−1. The first and second derivatives
with respect to pk−1 of B(pk−1) and C(pk−1) are positive for pk−1 ∈ (0, 1 −∑k−2

j=1 pj ). Hence
B(pk−1) and C(pk−1) are two strictly increasing convex functions. The domain of pk−1 is (0, 1−∑k−2

j=1 pj ). When pk−1 goes to zero, C(pk−1) goes to zero, and B(pk−1) goes to a positive number.

When pk−1 goes to 1 −∑k−2
j=1 pj , both B(pk−1) and C(pk−1) go to infinity. There are at most

two intersections of B(pk−1) and C(pk−1).
If B(pk−1) and C(pk−1) have two intersections, and (4) has a local minimum and a local

maximum at the two points, respectively, then it contradicts the conditions in (i). Since by the
conditions ak−1 > 0 and x1 + · · · + bk−1(x1, . . . , xk−2) < N , (4) goes to 0 as pk−1 goes to 0
and pk−1 goes to 1 −∑k−2

j=1 pj , which contradicts that (4) has only one local minimum and one
local maximum.

If B(pk−1) and C(pk−1) have no intersection, B(pk−1) is greater than C(pk−1) for all pk−1 ∈
(0, 1 −∑k−2

j=1 pj ) because B(pk−1) is greater than C(pk−1) when pk−1 goes to zero. Then (16)
is positive and (4) is an increasing function.

If B(pk−1) and C(pk−1) have one intersection at pk−1 = t , B(pk−1) is less than C(pk−1)

when pk−1 goes to 1 −∑k−2
j=1 pj . Then (16) is increasing for p ∈ (0, t) and (16) is decreasing

for p ∈ (t, 1 −∑k−2
j=1 pj ). Thus, (16) is a unimodal function with a maximum at pk−1 = t .
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Combining the above results, (16) is a unimodel function or an increasing function of pk−1.
(ii) When ak−1 = 0, (16) is not greater than zero, and (4) is a decreasing function.
(iii) When x1 + · · · + xk−2 + bk−1(x1, . . . , xk−2) = N , (16) is not less than zero, and (4) is an

increasing function. �

Proof of Lemma 3. For a fixed subset, by (ii) in Assumption 1 and the fact there are no other
endpoints of the confidence interval in the interior of this subset, there exists common a1, b1, ci

(x1, . . . , xi−1) and bi(x1, . . . , xi−1), i = 2, . . . , k − 1 such that the form of the coverage proba-
bilities at (p1, . . . , pk−1) in this subset is

b1∑
x1=a1

· · ·
bi (x1,...,xi−1)∑

xi=ci (x1,...,xi−1)

· · ·
bk−1(x1,...,xk−2)∑

xk−1=ck−1(x1,...,xk−2)

× N !
x1! · · · xk−1!(N − x1 − · · · − xk−1)!p

x1
1 p

x2
2 · · ·

⎛
⎝1 −

k−1∑
j=1

pj

⎞
⎠

(N−x1−···−xk−1)

. (17)

Let ai denote ci(x1 = a1, . . . , xi−1 = ai−1) for i�2. That is, a2 = c2(x1 = a1) and a3 =
c3(x1 = a1, x2 = a2) . . . etc. We are going to show c2(x1 = a1 + 1) = c2(x1 = a1) = a2. Note
that for a point (p∗

1, p∗
2, . . . , p∗

k−1) in the subset, p∗
2 ∈ (L2(c2(x1 = i)), U2(c2(x1 = i))), i = a1

and i = a1 + 1 if b1 > a1. If c2(x1 = a1 + 1) < c2(x1 = a1), then a1 + c2(x1 = a1 + 1) <

a1 + c2(x1 = a1)�N , which contradicts that c2(x1 = a1) is the smallest value of x2 such that
the confidence intervals based on x1 = a1 and x2 cover the points in the subset. Thus, we have
c2(x1 = a1 + 1)�c2(x1 = a1). If c2(x1 = a1 + 1) > c2(x1 = a1), we have a1 + 1 + c2(x1 =
a1) < a1 +1+ c2(x1 = a1 +1)�N , which contradicts that c2(x1 = a1 +1) is the smallest value
of x2 such that the confidence intervals based on x1 = a1 + 1 and x2 cover the parameters in the
subset. Thus, combining the above argument, we have c2(x1 = a1 + 1) = c2(x1 = a1) = a2.
By a similar argument, we have c2(x1 = j) = c2(x1 = a1) = a2, where a1 < j �b1. Then by a
similar argument, we have ci(x1, . . . , xi−1) = ai for i = 2, . . . , k − 1. �

Proof of Theorem 1. The space {(p1, . . . , pk−1) : 0�pi �1, i = 1, . . . , k−1} can be separated
into (g + 1)k−1 subsets by the endpoints, which are between 0 and 1, in each pi-axis. Thus, the
parameter space {(p1, . . . , pk−1) : 0�pi �1, i = 1, . . . , k − 1, p1 + · · · + pk−1 �1} can be
separated into at most (g + 1)k−1 subsets by these endpoints. For a fixed subset, by Lemma 3,
there exists ai and bi(x1, . . . , xi−1), i = 1, . . . , k − 1 such that the coverage probability of I (X)

at the parameter (p1 · · · pk−1) in this subset is (3).
We show that (3) attains its minimum value at one of the endpoints of this subset.
(i) Assume that the endpoints of this subset are in the interior of the parameter space. Denote

the endpoints of this subset in the pi-axis as vwi
and vwi+1. For any fixed p1 · · · pk−2, (4) is a

curve on (3). By Lemma 2, the minimum value of (4) occurs at pk−1 = vwk−1 or pk−1 = vwk−1+1
when ak−1 > 0 and b1 + · · · + bk−1(x1, . . . , xk−2)�N because (4) is a unimodal function or
an increasing function of pk−1, and the minimum value of (4) occurs at pk−1 = vwk−1+1 when
ak−1 = 0 because (4) is a decreasing function of pk−1. Thus, to derive the minimum of (3), we
only need to consider the cases when pk−1 = vwk−1 and pk−1 = vwk−1+1. By a similar argument,
when pk−1 = vwk−1 and p1, . . . , ph−1, ph+1 · · · pk−2 are fixed, the minimum value of (10) occurs
at ph = vwh

or ph = vwh+1. By induction, the minimum value of (3) occurs at p1 = vw1 or
vw1+1, p2 = vw2 or vw2+1, . . . and pk−1 = vwk−1 or vwk−1+1.
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Fig. 2. One of the cases of S(p1, p2) in a subset. It is clear that the minimum value of S(p1, p2) occurs at p1 = vw1 or
vw1+1, and p2 = vw2 or vw2+1 when p is in the subset.

H2

H3

H4

H5

P1 + P2 =1

p
2

1

0 1
p

1

H1

Fig. 3. The subsets separated by the endpoints of the confidence intervals have endpoints outside the interior of the
parameter space, such as H1, H2, H3, H4 and H5.

For example, when k = 3, Fig. 2 shows one of the cases of S(p1, p2) in a subset. It is clear
that the minimum value of S(p1, p2) occurs at p1 = vwi

or vw1+1 and p2 = vw2 or vw2+1 when
p belongs to the subset {(p1, p2) : vw1 < p1 < vw1+1, vw2 < p2 < vw2+1}.

(ii) Assume that some endpoints of this subset are not in the interior of the parameter space,
see Fig. 3 for the k = 3 case.

If some endpoints of this subset satisfy pi = 0 for some i, like H1 in Fig. 3 for the k = 3 case,
by (iii) in Assumption 1, ai is equal to zero. By (ii) of Lemma 2, S(pi |p1 · · · pi−1, pi+1, pk) will
not attain its minimum at the endpoints satisfying pi = 0. Thus, the points satisfying pi = 0 for
some i do not need to be considered.
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If some endpoints or interior points of this subset satisfying p1+· · ·+pk−1 = 1, like H2, H3, H4
or H5 in Fig. 3 for the k = 3 case, it implies pk = 0 for these points. In this case, there exists an
observation (x1, . . . , bk−1(x1, . . . , xk−2)), satisfying x1 + · · · + bk−1(x1, . . . , xk−2) = N , such
that the simultaneous confidence intervals based on this observation cover these point, otherwise,
it contradicts (iv) of Assumption 1. Note that the coverage probability of I (X) at these points is
equal to

∑
x1+···+xk−1∈F

N !
x1! · · · (N − x1 · · · − xk−1)!p

x1
1 · · · pxk−1

k−1 (18)

for the points with pk = 0, where F is a subset of some points satisfying x1+· · ·+xk−1 = N . Note
that (18) is an increasing function in pi for fixed pj , j �= i. Therefore, the minimum coverage
probability of the set of points {(p1, . . . , pk−1) : p1 + · · · + pk−1 = 1, a�pi �b} occurs at
pi = a. By Lemma 2, for p in this subset, when (4) is an increasing function, the minimum
value of (4) occurs at pk−1 = vwk−1 . When (4) is a decreasing function, the minimum value
of (4) occurs at pk−1 = vwk−1+1 when vwk−1+1 = 1 − p1 − · · · − pk−2, and the minimum
value of (4) occurs at pk−1 = 1 − p1 − · · · − pk−2 if vwk−1+1 > 1 − p1 − · · · − pk−2. When
(4) is a unimodal function, the minimum value of (4) occurs at pk−1 = vwk−1 , or vwk−1+1 if
vwk−1+1 < 1 − p1 − · · · − pk−2, and the minimum value of (4) occurs at pk−1 = vwk−1 or
1 − p1 · · · − pk−2 if vwk−1+1 > 1 − p1 − · · · − pk−2. Then by a similar argument as in (i) and
the fact that (18) is an increasing function of pi , the minimum coverage probability of the subset
occurs at the intersection of this subset and (E1 ∪ E2).

Combining the above results, the confidence coefficient is the minimum value of the coverage
probabilities at the points in E1 ∪ E2. �
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