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a b s t r a c t

The current variance estimators for Jukes and Cantor’s one-parameter model and Kimura’s two-

parameter model tend to underestimate the true variances when the true proportion of differences

between the two sequences under study is not small. In this paper, we developed improved variance

estimators, using a higher-order Taylor expansion and empirical methods. The new estimators

outperform the conventional estimators and provide accurate estimates of the true variances.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A basic process in the evolution of DNA sequences is the
substitution of one nucleotide for another during evolution. The
substitution of one allele for another in a population generally
takes thousands of years or longer to complete, so the process
cannot be directly observed. To detect evolutionary changes in a
DNA sequence, we need to compare two sequences that have
descended from a common ancestral sequence.

If two sequences of length L differ from each other at X sites,
the proportion of differences, X/L, is referred to as the observed or
uncorrected divergence. When the degree of divergence between
the two sequences compared is small, the chance for more than
one substitution to have occurred at a site is negligible, and the
number of observed differences between the two sequences is
close to the actual number of substitutions. However, if the degree
of divergence is substantial, the observed number of differences is
likely to be smaller than the actual number of substitutions due to
multiple hits at the same site. Many methods have been proposed
to correct for multiple hits (Holmquist, 1971; Jukes and Cantor,
1969; Kaplan and Risko, 1982; Kimura, 1980, 1981; Lanave et al.,
1984). The simplest and most frequently used models are Jukes
ll rights reserved.
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and Cantor’s (1969) one-parameter model and Kimura’s, (1980)
two-parameter model.

Jukes and Cantor’s one-parameter model assumes that sub-
stitutions occur with equal probability, say a, among the four
nucleotide types. Since the time of divergence between two
sequences is usually unknown, we cannot estimate a directly.
Instead, we compute K, the number of substitutions per site since
the time of divergence between the two sequences. In the one-
parameter model case, K ¼ 2(3at), where 3at is the expected
number of substitutions per site in a single lineage. Jukes and
Cantor (1969) derived the following formula:

K ¼ �
3

4
1n 1�

4

3
p̂

� �
(1)

where p̂ ¼ X/L is the observed proportion of different nucleotides
between the two sequences. The following approximated estima-
tor for the sampling variance was derived by Kimura and Ohta
(1972) and has been commonly used in the literature.

VðKÞ ¼
p̂� p̂

2

Lð1� ð4=3Þp̂Þ2
(2)

In the case of the two-parameter model (Kimura, 1980), the
differences between two sequences are classified into transitions
and transversions. Let P̂ ¼ X1/L and Q̂ ¼ X2/L be the observed
proportions of transitional and transversional differences between
the two sequences, respectively, where X1 and X2 are the numbers
of transitional and transversional differences between the two
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sequences. Then the number of nucleotide substitutions per site
between the two sequences, K2, is estimated by

K2 ¼
1

2
1n

1

1� 2P̂ � Q̂

 !
þ

1

4
1n

1

1� 2Q̂

 !
(3)

The sampling variance is approximately given by

VðK2Þ ¼
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Since the above two variance estimators underestimate the true
variances in most circumstances, we derive improved estimators
for estimating the sampling variances, using a higher-order Taylor
expansion and empirical methods. Our simulation results show
that the new estimators outperform the conventional variance
estimators and provide accurate estimates of the sampling
variances.
2. Methods

Because Eq. (1) involves the log function, it is not easy to
directly calculate the variance. So we employ the Taylor expansion
to expand the log function at X ¼ Lp.

By Taylor expansion at X ¼ Lp to second order, we have
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From the formula

VarðYÞ ¼ EðY2
Þ � ðEYÞ2

where Y is a random variable, the variance of K can be expressed
as

VarðKÞ ¼ E �
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From Eq. (5), the first term in Eq. (6) is
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From Eq. (5), the second term in Eq. (6) is
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From Eqs. (7) and (8) and the fact
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we have
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Our simulation study showed that when p is small, the variance
estimator (9) provides a better estimator for the true variance
than the estimator (2).

Thus, when p is small, we can directly use the estimator (9) as
an improved estimator for the variance. However, when p is not
small, the estimator (9) is not good enough to approximate the
true variance because some higher-order terms become non
negligible. Therefore, we use Eq. (9) to propose the following form
of a new estimator:

aðp̂Þ
p̂ð1� p̂Þ

Lð1� ð4=3Þp̂Þ2
þ bðp̂Þ

8p̂
2
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9L2
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(10)

for the one-parameter model, where a(p̂) and b(p̂) can be
derived empirically by simulation, so that the new estimator
can approximate the true variance more accurately than
formula (9)

For the two-parameter model, we expand the function

f ðX1;X2Þ ¼ �
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in Eq. (3) at X1 ¼ LP and X2 ¼ LQ by using the Taylor expansion to
the second order. Then, we have
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From the formula

Varðf ðX1 � X2ÞÞ ¼ Eðf 2
ðX1;X2ÞÞ � ðEf ðX1;X2ÞÞ

2

and tedious calculations, we obtain
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where
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By an argument similar to that for the one-parameter model, we
propose, on the basis of Eq. (12), the following form of a new
estimator
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for the two-parameter model, where Ŝ is the estimator of S by
replacing P and Q in Ŝ by P̂ and Q̂, respectively.
Table 1
Comparison of the conventional estimator V(K) and the new estimator V*(K) for the

one-parameter model

Sequence

length (L)

Expected

number of

substitutions

per site

True variance Estimator

V(K) V*(K)

500 0.1 0.000362595 0.000219929 0.000311769

0.2 0.001404189 0.000494168 0.001479758

0.3 0.004145225 0.000830774 0.004766365

0.4 0.010529535 0.001247488 0.012617401

0.5 0.025591656 0.001776986 0.029761526

0.6 0.061907183 0.002434374 0.063117721

0.7 0.141074137 0.003261173 0.123747284

1000 0.1 0.000196551 0.000110974 0.0001567

0.2 0.000716157 0.000247913 0.000735775

0.3 0.00203738 0.000416255 0.002360282

0.4 0.005212835 0.000625914 0.00626774

0.5 0.013088052 0.000886346 0.014583643

0.6 0.03068909 0.001209791 0.030645552

0.7 0.073055629 0.001617717 0.059929941

5000 0.1 3.84488E-05 2.21349E-05 3.08939E-05

0.2 0.000145207 4.93066E-05 0.000143897

0.3 0.000403367 8.27823E-05 0.000460616

0.4 0.000997212 0.000124208 0.001215598

0.5 0.002500406 0.000175767 0.002822049

0.6 0.005804204 0.000240054 0.005940681

0.7 0.013515512 0.000320543 0.011582702
3. Results and discussion

From the forms of Eqs. (10) and (13), we employ an empirical
method to find suitable a(p̂), b(p̂), c(P̂,Q̂) and d(P̂,Q̂) such that the
new estimators can be close to the true variances. There are many
options of a(p̂), b(p̂), c(P̂,Q̂) and d(P̂,Q̂) which can lead to better
estimators for the variances of the one- and two-parameter
models.

To obtain general formulas for a(p̂) and b(p̂) in the one-
parameter model, we use simulation to profile the relation of the
true variance and the estimator (9) first, and then adopt the model
selection method to derive a(p̂) and b(p̂). We fix a(p̂) ¼ b(p̂) ¼ 1 to
obtain the new estimators at first. Because the difference between
the true variances and new estimators increases exponentially as
p̂ increases, we assume that the coefficient terms in Eq. (10) are
functions of p̂ and use the nonlinear regression method to obtain
the approximation formulas of a(p̂) and b(p̂). Although there are
many possible choices of a(p̂) and b(p̂), we choose those that
can perform well under all different sequence length L in our
simulation. The derivation of coefficient terms c(P̂,Q̂) and d(P̂,Q̂) in
Eq. (13) of the two-parameter model is similar to the one-
parameter model.

From the above simulations, we propose

V�ðKÞ ¼ 0:6e9p̂ p̂ð1� p̂Þ
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to be the new estimators of the variances for the one- and two-
parameter models, respectively.

To test the performances of formulas (14) and (15), we
generate DNA sequences by using the evolver program in PAML
package (Yang, 1997). Several combinations of parameter values
are used to generate different data sets: sequence length (L ¼ 500,
1000 and 5000) and the expected number of nucleotide substitu-
tions per site (0.1–0.7). For each data set, we generate 1000 pairs
of sequences and calculate their corresponding K values from
formula (1). Hence, we can calculate the sample variance of
these 1000 values of K and use it as the true variance of each data
set. A similar simulation procedure is used for Kimura’s two-
parameter model, and the ratio of transition/transversion is set to
be 1, 2 and 5.

Tables 1 and 2 show the comparisons of the new estimators
(14) and (15) and the conventional estimators (2) and (4). For the
one-parameter model, when the number of substitutions per site
is low, the conventional estimators are not far from the true
estimators. For example, when the expected number of nucleotide
substitutions per site is 0.1, the conventional estimator under-
estimates the true variance within a tolerable region. However, as
the divergence increases, the performance becomes poor. When
the divergence is greater than 0.2, the conventional estimators
seriously underestimate the true variance, for all the different
sequence lengths studied.

As seen from Table 1, the improved estimator can accurately
estimate the true variance for the case where the expected
number of nucleotide substitutions per site is 0.1 or 0.2. When the
expected number of nucleotide substitutions per site is greater
than 0.2, the improved estimator provides a much better
estimator for the variance compared with the conventional one.

For the two-parameter model, Table 2 provides the simulation
results for different transition/transversion ratios. It can be seen
that the improved estimator outperforms the conventional
estimator.

Although many more sophisticated methods for estimating the
number of nucleotide substitutions per site between two
sequences (K) are available, the one- and two-parameter methods
are still very widely used. In addition, the two-parameter method
is used in Li et al. (1985), Li (1993) and Ina (1995) for estimating
the number of substitutions per synonymous site and the number
of substitutions per nonsynonymous site, and the method by Li
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Table 2
Comparison of the conventional estimator V2 and the new estimator V2* for the two-parameter model when the ratio of transition/transversion, k, is set to be 1, 2 or 5

L d k ¼ 1 k ¼ 2 k ¼ 5

True variance �10�3 Estimator True variance �10�3 Estimator True variance �10�3 Estimator

V2�10�3 V2*�10�3 V2�10�3 V2*�10�3 V2�10�3 V2*�10�3

500 0.1 0.4 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3

0.2 1.4 0.5 1.7 1.6 0.5 1.7 2.0 0.5 1.7

0.3 4.2 0.8 5.7 4.7 0.9 5.8 7.4 0.9 6.1

0.4 10 1.3 16 13 1.3 17 23 1.5 18

0.5 26 1.8 41 35 1.9 42 72 2.3 45

0.6 64 2.5 90 91 2.6 95 224 3.3 104

0.7 149 3.3 186 237 3.6 194 678 4.8 220

1000 0.1 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2

0.2 0.7 0.2 0.8 0.8 0.3 0.8 1.0 0.3 0.9

0.3 2.1 0.4 2.8 2.4 0.4 2.9 3.6 0.5 3.0

0.4 5.3 0.6 8.0 6.6 0.6 8.2 11 0.7 8.7

0.5 13 0.9 20 18 0.9 20 36 1.1 22

0.6 31 1.2 44 42 1.3 45 106 1.6 49

0.7 75 1.6 89 104 1.8 92 300 2.3 102

5000 0.1 0.03 0.02 0.03 0.04 0.02 0.03 0.04 0.02 0.03

0.2 0.1 0.05 0.2 0.2 0.05 0.2 0.2 0.05 0.2

0.3 0.4 0.08 0.6 0.5 0.08 0.6 0.7 0.09 0.6

0.4 1.0 0.1 1.5 1.2 0.1 1.6 2.1 0.1 1.6

0.5 2.5 0.2 3.8 3.1 0.2 3.9 6.1 0.2 4.1

0.6 5.8 0.2 8.4 7.9 0.3 8.6 17 0.3 9.2

0.7 14 0.3 17 19 0.3 18 51 0.5 19

d denotes the expected number of substitutions per site.
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(1993) is commonly used in current literature. Therefore, accurate
estimation of the variance of K for the one- and two-parameter
methods is desirable. An alternative method used to improve the
variance estimator in the literature is the bootstrap approach.
However, since this approach does not provide a closed form for
the variance, it requires heavier computations than do the
improved variance estimators we derived in this paper. Our
estimators have closed forms, so they can be easily applied or
included in a computational package such as MEGA4.

In conclusion, the proposed new variance estimators provide
substantial improvements for the variance estimation. A compu-
ter program for the present variance estimators is available from
the author upon request. Online calculations are available at the
website: http://cg1.iis.sinica.edu.tw/�var-esti/.
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