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Abstract

The prediction interval is an important tool in medical applications for predict-

ing the number of times a disease will occur in a population. The performance of the

existing prediction intervals, however, are unsatisfactory when the true proportion

is near a boundary. Since the true proportion can be very small in real applica-

tions, in this paper, we propose improved prediction intervals with better coverage

probability than the existing methods. Their predictive distributions are compared

in terms of the Kullback-Leibler distance and the intervals are compared using a

hearing screening medical example.

Key words: binomial distribution, coverage probability, prediction interval, predictive

distribution

1



1 Introduction

The prediction interval (PI) is a very useful tool to predict future observations. We

consider predicting the disease count in a population for medical applications. Since the

number of diseased patients in a population follows a binomial distribution, in this paper,

we investigate prediction intervals for the binomial distribution.

The construction of prediction intervals for continuous distributions has been exten-

sively studied in the literature (Basu, Ghosh and Mukerjee 2003; Hall and Rieck 2001;

Hamada, Johnson and Moore 2004; Lawless and Fredette 2005; Olive 2007; Cai, Tian,

Solomon and Wei 2008; Patel 1989). However, compared with the continuous distri-

butions, there are fewer investigations for discrete distributions. The most widely used

closed form prediction interval for a binomial random variable was proposed by Nelson

(1982). Another prediction interval with a closed form was proposed by Bain and Patel

(1993). In addition, prediction intervals with associated numerical calculation to achieve

a desired coverage probability were introduced in Patel and Samaranayake (1991) and

Wang (2008). Although the last two approaches can provide accurate coverage proba-

bilities for the prediction intervals, they heavily rely on numerical calculations and can

not provide closed forms. Since a prediction interval with a closed form can be easily
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employed in applications, in this paper, we explore approximate prediction intervals with

a closed form.

The coverage probabilities for the Nelson interval and the Bain and Patel interval do

not perform well when the true binomial proportion is near the boundaries because their

coverage probabilities are much lower than the nominal level as the binomial proportion

goes to 0 or 1. In addition, the average coverage probabilities of these two intervals,

averaged over the parameter space, are also unsatisfactory. When the sample size is not

large, the average coverage probabilities of these two intervals are much lower than the

nominal level based on a simulation study.

In this paper, two improved prediction intervals are proposed by inverting the score test

and by adjusting an existing interval. The coverage probabilities of these two proposed

prediction intervals are significantly higher than those of the existing intervals when the

true proportion is close to the boundaries.

In addition, the two new intervals are evaluated by comparing their corresponding

predictive distributions in terms of the Kullback-Leibler distance. The calculation results

show that the distance between the score predictive distribution and the binomial distri-

bution is smaller than that between the adjusted predictive distribution and the binomial

distribution.
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2 Existing prediction interval

We present several existing prediction intervals in this section. The first of these is the

prediction interval for a binomial random variable constructed by Nelson (1982), which is

reviewed in Hahn and Meeker (1991). Suppose that the past data consist of X successes

out of n trials from a B(n, p) distribution with a success probability p, 0 < p < 1. Let Y be

the future number of successes out of m trials from a B(m, p) distribution. A large-sample

approximate level γ two-sided prediction interval (L(X), U(X)) for the future number Y

of occurrences based on the observed value of the number X of the past occurrences for

the binomial distribution constructed by Nelson (1982) is

Ŷ ± z(1+γ)/2(mp̂(1− p̂)(m+ n)/n)1/2 (1)

where p̂ = X/n and Ŷ = mp̂ when X,n − X,Y andm − Y all are large. Here z(1+γ)/2

denotes the upper (1 + γ)/2 quantile of the standard normal distribution. Note that

the true coverage probability of the interval (L(X), U(X)) at p = p0 is defined as the

probability Pp0(L(X) < Y < U(X)).

The second level γ prediction interval was proposed by Patel and Samaranayake (1991).

This uses the form (0, X + d) as an upper prediction interval or (X − d,m) as a lower

prediction interval for Y , where d is a positive integer. To guarantee that the coverage
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probability of the upper prediction interval (0, X + d) is greater than or equal to γ, the

exact coverage probability of the interval is derived and it is necessary to find a d such

that its coverage probability is greater than or equal to γ for all p. It turns out that the

derivation of d is to find the smallest integer d satisfying

Inf0≤p≤1

n∑
x=0

(
n

x

)
px(1− p)n−x(

x+d∑
y=0

(
m

y

)
py(1− p)m−y) ≥ γ.

The value of d can be exactly derived only for the case of m = n and an approximated

value of d can be obtained numerically for the case of m ̸= n. A similar argument is

applied for the lower prediction bound.

The third approximate level γ prediction interval was proposed by Bain and Patel

(1993). This approach considers a conditional distribution for some functions of X and Y

to eliminate the unknown parameter, and then uses the conditional distribution to derive

the predictive limits.

The interval has the form

(TL −X,TU −X), (2)

where

TL =
(2X1v + sw)−

√
s2w2 + 4X1w(n−X1)

2(v2 + w)
,

TU =
(2X2v + sw) +

√
s2w2 + 4X2w(n−X2)

2(v2 + w)
,

5



s = n+m, v = n/s, w = z2(1+γ)/2v(1− v)/(s− 1), X1 = X − 1/2 and X2 = X + 1/2.

In addition to these existing prediction intervals, Wang (2008) proposed procedures

to calculate the minimum coverage probability and average coverage probability for a

prediction interval. Based on those procedures, the factor z(1+γ)/2 can be adjusted to

obtain the prediction interval with either a desirable minimum coverage probability or a

desirable average coverage probability.

As mentioned in the introduction section, in this paper we mainly focus on the intervals

with closed forms. The performance of the two existing prediction intervals with closed

forms (1) and (2) in terms of their coverage probabilities are discussed as follows.

Figures 1 and 2 give the coverage probabilities and expected lengths of the Nelson

and the Bain and Patel prediction intervals for different sample size n when m is fixed at

50. It is seen that the coverage probabilities of these existing intervals are far from the

nominal level when p is near the boundaries. Since the true binomial proportion in real

applications may be close to the boundaries, the behavior near a boundary is important.

When p is not close to the boundaries, the coverage probability of the Nelson interval is

lower than the nominal level 0.95. In contrast, the coverage probability of the Bain and

Patel interval is higher than the nominal level 0.95 when p is not near a boundary, but it is

lower than 0.95 for p near boundaries when the sample size is not large enough. Overall, in
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addition to the poor performance for p near the boundaries, the existing methods cannot

achieve the desirable coverage probability or are too conservative.

Analyzing the Nelson’s interval, the form is derived from the fact that

Y −mp̂√
p̂(1− p̂)m(m+ n)/n

(3)

is approximately N(0, 1) distributed. This is similar to the construction of the Wald

confidence interval for a binomial proportion p, which is

p̂± z(1+γ)/2

√
p̂(1− p̂)/n. (4)

It is well known that the coverage probability of the Wald interval is much lower than the

nominal level for a binomial distribution when the true proportion is close to a boundary

(Wang 2007). This unsatisfactory property also occurs at the prediction interval construc-

tion if we simply employ the Wald approach. To obtain prediction intervals with better

performance when the true proportion is near a boundary, we can use similar approaches,

such as the score approach or the Agresti-Coull approach (Agresti and Coull 1998) for

improving the coverage probabilities of confidence intervals (Brown, Cai and DasGupta

2001), to solve the problem. Agresti and Caffo (2000) and Pires and Amado (2008) also

provide some discussions and comparisons of the confidence intervals for the binomial pro-

portion. In the next section, two improved confidence intervals in the literature for the
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binomial distribution are introduced, and improved prediction intervals based on similar

approaches are proposed.

3 Improved prediction intervals

In this section, we introduce two alternative confidence intervals for a binomial proportion

and use similar approaches to construct improved prediction intervals for a binomial

random variable.

The two alternative confidence intervals discussed in Agresti and Coull (1998), Brown,

Cai and DasGupta (2002), Wilson (1927) and Wang (2007) are as follows.

1. The Wilson interval. Let X̃ = X + z2(1+γ)/2/2 and ñ = n + z2(1+γ)/2. Let p̃ = X̃/ñ,

q̃ = 1− p̃, p̂ = X/n and q̂ = 1− p̂. The level γ Wilson interval has the form

CIW (X) = p̃±
z(1+γ)/2n

1/2

ñ

(
p̂q̂ +

z2(1+γ)/2

4n

)1/2

.

2. The Agresti-Coull interval. The level γ Agresti-Coull interval is

CIAC(X) = p̃± z(1+γ)/2 (p̃q̃)
1/2 ñ−1/2,

where the notations are as in the case 1 for the Wilson interval.

The Wilson and Agresti-Coull intervals successfully increase the coverage probability

for p near boundaries, compared with the Wald confidence interval. The Wilson interval
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is derived by replacing p̂ by p in the Wald interval, and then solving p from the equation

p = p̂ ± z(1+γ)/2

√
p(1− p)/n, which is the inversion of the score test. The Agresti-Coull

interval uses the approach of adding two successes and two failures to adjust the Wald

interval.

Remark 1. There are two other confidence intervals, likelihood ratio and Bayesian

credible intervals, discussed in Brown et al. (2002). Since the likelihood ratio interval

does not have a closed form and the minimum coverage probability of the credible interval

is zero (Wang 2007), we do not consider these two intervals here.

To construct the first proposed prediction interval, we employ an approach similar

to the construction of the Wilson interval. We replace p̂ by (X + Y )/(m + n) in the

denominator of (3) and use the fact that the random variable

Y −mp̂√
(X+Y )
(n+m)

(1− (X+Y )
(n+m)

)m(m+n)
n

(5)

is approximately N(0, 1) distributed. To avoid the poor coverage probability when the

parameter is near the boundaries, we invert

{y : y = mp̂± z(1+γ)/2

√
W (x, y)}, (6)

to derive the prediction limits instead of inverting

{y : y = mp̂± z(1+γ)/2

√
(x+ y)

(n+m)
(1− (x+ y)

(n+m)
)
m(m+ n)

n
}, (7)
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where

W (x, y) =
(x+ z2(1+γ)/2/2 + y)

(n+ z2(1+γ)/2 +m)
(1−

(x+ z2(1+γ)/2/2 + y)

(n+ z2(1+γ)/2 +m)
)
m(m+ n)

n
.

Note that the form of W (x, y) adds z2(1+γ)/2/2 to x and z2(1+γ)/2 to n in the square root

term in (7). This modification prevents the interval (6) from shrinking to the empty set

when x = y = 0.

The two solutions of y in (6) are the proposed lower prediction limit Ls(X) and the

upper prediction limit Us(X), which are

A

C
± B

C
, (8)

where

A = mn[2xz2(1+γ)/2(n+ z2(1+γ)/2 +m) + (2x+ z2(1+γ)/2)(m+ n)2]

B = (mn(m+ n)z2(1+γ)/2(m+ n+ z2(1+γ)/2)
2(2(n− x)[n2(2x+ z2(1+γ)/2) + 4mnx+ 2m2x]

+nz2(1+γ)/2[n(2x+ z2(1+γ)/2) + 3mn+m2]))1/2

and

C = 2n[(n+ z2(1+γ)/2)(m
2 + n(n+ z2(1+γ)/2)) +mn(2n+ 3z2(1+γ)/2)].

Since this approach is similar to constructing the score confidence interval, we call

this interval the score prediction interval.
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In addition to the above approach, to avoid the poor performance of p near the bound-

aries, we can adjust the usual prediction interval (1) by replacing p̂ with p̃, which leads

to the second proposed interval (La(X), Ua(X)):

Ŷ ± z(1+γ)/2(mp̃(1− p̃)(m+ n)/n)1/2. (9)

Note that here we do not consider replacing p̂ in Ŷ by p̃ because the expectation Ep(Y −

mp̃) is not zero. If we replace p̂ in Ŷ by p̃, the Kullback -Leibler distance discussed in

Section 4 diverges as the sample size increases. This interval basically uses a method

similar to the Agresti and Coull confidence interval, where p̃ is used as an estimator of p

instead of p̂ to overcome the problem of the poor behavior of the Wald interval. We call

the second proposed interval the adjusted prediction interval.

The performance of the score and adjusted prediction intervals are presented in Figures

3 and 4. The coverage probabilities of the proposed intervals are decreasing in p when the

proportion is near 0 and are increasing in p when the proportion is near 1. The coverage

probabilities are close to the nominal level for p in an interval with a center at p = 0.5.

The proposed intervals have the advantage of higher coverage probability when p is near

the boundaries in which case the performance of the coverage probabilities of the existing

intervals are unsatisfactory. In addition, the score interval has shorter expected length

than the other intervals.
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Remark 2. The coverage probabilities presented in Figures 1-4 are the exact coverage

probabilities calculated by the definition. Since the performance of the coverage proba-

bilities are significantly different for different intervals when p goes to the boundaries, to

clarify the presentation, we use different scales for the y-axis in these figures.

Remark 3. Since the value of Y is from 0 tom, suitable modifications for the intervals

(8) and (9) are [max(0, Ls(X)),min(Us(X),m)] and [max(0, La(X)),min(Ua(X),m)], re-

spectively. However, since the existing intervals do not use a modified form, for a fair

comparison, we still use the original form of the proposed interval for investigation in this

study.

4 Predictive distribution

The new prediction intervals can be evaluated by the criterion of the predictive distri-

bution estimation. The true distribution of Y is the binomial distribution. Since the

two proposed intervals are constructed using the normal approximation, the degree of ap-

proximation can be measured by comparing these normal approximations with the true

binomial distribution.

There is a large literature on the predictive distribution estimation, for example,

Aitchison (1995), Murray (1997), Ng (1980), Lejeune and Faulkenberry (1982), Harris
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(1989) and Lawless and Fredette (2005). One method of constructing a predictive dis-

tribution from a predictive limit is treating α prediction limits as the α quantiles in the

predictive distribution function.

Note that the true probability mass function of the future observation Y is

fp(y) =

(
m

y

)
py(1− p)m−y. (10)

Based on (6) and (9), let f s(y|x) and fa(y|x) denote the predictive densities derived by

the score and adjusted predictive limits using the plug-in estimators, which indicates that

f s(y|x) and fa(y|x) are the density functions of the normal distributions N(mp̂,W (x, y))

and N(mp̂, p̃(1− p̃)m(m+ n)/n).

An approach to evaluate a predictive distribution is to measure the goodness of the

predictive distribution in terms of the Kullback-Leibler distance between f̃(y|x) and fp(y),

EX(
m∑
y=0

fp(y)log{
fp(y)

f̃(y|x)
}), (11)

where f̃(y|x) is a predictive density estimator. See, for example, Lawless and Fredette

(2005).

Remark 4. Note that the variances of the two normal approximations are not close

to that of the binomial distribution B(n, p) when n is not large enough. It is mainly

because the mean mp̂ is a random variable, but not a constant mp. Since the mean of
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mp̂ is mp, we still can use the Kullback-Leibler distance between a predictive distribution

and the binomial distribution to evaluate the performance of the predictive distribution.

The Kullback-Leibler distances of f s(y|x) and fa(y|x) to (10) are

EX(
m∑
y=0

fp(y)log{
fp(y)

f s(y|x)
}) (12)

and

EX(
m∑
y=0

fp(y)log{
fp(y)

fa(y|x)
}). (13)

Comparisons of the Kullback-Leibler distances for different sample sizes are shown in

Figure 5. It can be seen that the predictive distribution derived from the score intervals

can approximate the true binomial distribution more accurately than that derived from

the adjusted interval.

Theorem 1 shows that the variance of the distribution with respect to the density

function f s(y|x) is closer to the true variance than that of the distribution with respect

to fa(y|x). This can provide an intuitive explanation for the results in Figure 5.

Theorem 1 The variance of the true distribution for Y , mp(1 − p), is closer to the

expectation of the variance estimator W (X, Y ) than to the expectation of p̃(1− p̃)m(m+

n)/n. That is,

|E(W (X, Y ))−mp(1− p)| < |E(p̃(1− p̃)m(m+ n)/n)−mp(1− p)|. (14)
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The proof of Theorem 1 can be obtained by straightforward calculations.

Note that here we do not list the Kullback-Leibler distance of the predictive distribu-

tion derived from the Nelson interval because its Kullback-Leibler distance is divergent.

Since the predictive density function derived from it is

1√
2πp̂(1− p̂)m(m+ n)/n

e
−(Y −mp̂)2

2p̂(1−p̂)m(m+n)/n , (15)

when x = 0, the denominator of (15) is equal to zero. Thus, it leads to an infinite

Kullback-Leibler distance. From the Kullback-Leibler distance criterion, the proposed

intervals with finite Kullback-Leibler distances are better than the Nelson interval. In

addition, since the derivation of Bain and Patel interval is not directly derived by the

normal approximation, we cannot directly obtain its predictive distribution.

5 Applications

In this paper, we take the example of a hearing screening program for all births with

transient evoked otoacoustic emissions in all 8 maternity hospitals in the state of Rhode

Island over a 4-year period during 1993-1996 as an application of the binomial prediction

interval. The goal of this hearing screening program is to ensure that all infants and

toddlers with hearing loss are identified as early as possible and provided with timely and
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appropriate audiological, educational, and medical intervention. This example contains

hearing screening data collected prospectively for 47991 normal nursery liveborns born in

Rhode Island between January 1, 1993 and December 31, 1996 (Vohr, et al. 1998). The

prediction interval can be used to predict the number of children with hearing loss for

future years. Since the time period considered here is not large, we can assume that the

number of children with hearing loss follows the same binomial distribution in each year.

Table 1 lists the numbers of all births and infants with permanent hearing loss, re-

spectively for each year during 1993-1996.

Table 1. Screening demographics between 1993 and 1996

Year 1993 1994 1995 1996 Total

Normal nursery liveborns 9885 13176 12694 12236 47991

Identified with

permanent hearing loss 11 12 20 18 61

To compare the performance of the prediction intervals, we use the observations of

the two years 1993 and 1994 for the normal nursery liveborns to predict the number

of infants with hearing loss for the future two years 1995 and 1996. The total number

of the normal nursery liveborns for 1993 and 1994 is 23061, and the total number of

the infants with hearing loss for these two years is 23. Assume that the number of the

infants with hearing loss follows a binomial distribution. The level 0.9 Nelson interval,

16



Bain and Patel interval, score interval and adjusted interval, based on the first two year

observations, for the number of the infants with hearing loss for the future two years 1995

and 1996 are (13.07, 36.66), (13.52, 39.36), (14.27, 38.36) and (12.73, 37.00), respectively,

where z(1+γ)/2 = 1.64 in these prediction intervals. However, according to the data, the

true total number of the infants with hearing loss of the future two years 1995 and 1996

was 38, which does not belong to the Nelson interval or the adjusted interval, but it does

fall into the Bain and Patel interval and the score interval.

To predict the number of the infants with hearing loss for the year 1995 based on

the data from 1993 and 1994, we obtain that the 0.9 level Nelson prediction interval,

Bain and Patel interval, score prediction interval and adjusted prediction interval are

(5.4, 19.92), (5.4, 21.55), (5.96, 20.83) and (5.19, 20.13), respectively. The Bain and Patel,

score and adjusted intervals cover the true number 20, but the Nelson interval does not

cover the true number 20.

It reveals that the performance of the score predictive interval is better than the Nelson

interval in this application which assumes that the model that the binomial distribution

in each year is the same is true. A comparison of the score and adjusted prediction

intervals reveals that the theoretical comparison of Kullback-Leibler distances for the two

predictive distributions is consistent with the comparison from this application example.
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6 Conclusion

This paper proposes two improved prediction intervals, the score prediction inter-

val and the adjusted prediction interval, with closed forms for predicting disease count.

Both of them can increase the coverage probability when p is close to the boundaries

compared with the existing prediction intervals. A simulation study shows the score in-

terval has the shortest expected length of these intervals. The two new intervals are also

evaluated in terms of the Kullback-Leibler distance through the predictive distributions.

The comparison shows the predictive distribution corresponding to the score interval can

approximate the binomial distribution better than that corresponding to the adjusted

prediction interval.

In addition, to obtain more accurate results, we can employ the procedure of Wang

(2008) to derive an appropriate value of z(1+γ)/2 such that the prediction intervals can

achieve either a desired minimum coverage probability or a desired average coverage prob-

ability.
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Figure 1: Coverage probabilities and expected lengths of the 95% level Nelson prediction

intervals for the Binomial distributions with n = 10(dotted line), n = 50(dashed line) and

n = 1000(solid line).
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Figure 2: Coverage probabilities and expected lengths of the 95% level Bain and Patel prediction

intervals for the Binomial distributions with n = 10(dotted line), n = 50(dashed line) and

n = 1000(solid line).
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Figure 3: Coverage probabilities and expected lengths of the 95% level score prediction intervals

for the Binomial distributions with n = 10(dotted line), n = 50(dashed line) and n = 1000(solid

line).
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Figure 4: Coverage probabilities and expected lengths of the 95% level adjusted prediction

intervals for the Binomial distributions with n = 10(dotted line), n = 50(dashed line) and

n = 1000(solid line).
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Figure 5: Kullback-Leibler distances of the score (solid line) and adjusted predictive distribu-

tions (dashed line) from the true binomial distribution when the sample sizes are (1) n = m = 10,

(2) n = 50,m = 10 and (3) n = m = 50
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